01

Units and Measurements

TOPIC 1

Units

01 The angle of T^{\prime} (minute of arc) in radian is nearly equal to
[NEET (Oct.) 2020]
(a) $2.91 \times 10^{-4} \mathrm{rad}$
(b) $4.85 \times 10^{-4} \mathrm{rad}$
(c) $4.80 \times 10^{-6} \mathrm{rad}$
(d) $1.75 \times 10^{-2} \mathrm{rad}$

Ans. (a)

$$
\begin{aligned}
1 \text { minute } & =\frac{1}{60} \text { degree }=\frac{1}{60} \times \frac{\pi}{180} \mathrm{rad} \\
& =2.91 \times 10^{-4} \mathrm{rad}
\end{aligned}
$$

02 The unit of thermal conductivity is :
[NEET (National) 2019]
(a) $\mathrm{Jm}^{-1} \mathrm{~K}^{-1}$
(b) $\mathrm{Wm} \mathrm{K}^{-1}$
(c) $\mathrm{Wm}^{-1} \mathrm{~K}^{-1}$
(d) $\mathrm{Jm} \mathrm{K}^{-1}$

Ans. (c)
The rate of heat flow through a conductor of length L and area of cross-section A is given by

$$
\frac{d Q}{d t}=K A \frac{\Delta T}{L} J / s \text { or watt }
$$

where, K = coefficient of thermal conductivity and
$\Delta T=$ change in temperature

$$
\begin{aligned}
& \Rightarrow \quad K=\frac{L}{A \Delta T} \frac{d Q}{d t} \\
& \therefore \text { Unit of } K=\frac{\text { metre }}{(\text { metre })^{2} \times \text { kelvin }} \times \text { watt } \\
& =\mathrm{Wm}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

03 The unit of permittivity of free space, ε_{0} is
[CBSE AIPMT 2004]
(a) coulomb/newton-metre
(b)newton- metre ${ }^{2} /$ coulomb 2
(c) coulomb ${ }^{2}$ /newton -metre ${ }^{2}$
(d) coulomb ${ }^{2} /\left(\right.$ newton - metre) ${ }^{2}$

Ans. (c)
According to Coulomb's law, the electrostatic force

$$
F=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{q_{1} q_{2}}{r^{2}}
$$

q_{1} and $q_{2}=$ charges, $r=$ distance between charges
and $\varepsilon_{0}=$ permittivity of free space

$$
\Rightarrow \quad \varepsilon_{0}=\frac{1}{4 \pi} \times \frac{q_{1} q_{2}}{r^{2} F}
$$

Substituting the units for q, r and F, we obtain unit of ε_{0}

$$
\begin{aligned}
& =\frac{\text { coulomb } \times \text { coulomb }}{\text { newton }-(\text { metre })^{2}} \\
& =\frac{(\text { coulomb })^{2}}{\text { newton }-(\text { metre })^{2}}
\end{aligned}
$$

04 The value of Planck's constant in SI unit is
[CBSE AIPMT 2002]
(a) $6.63 \times 10^{-31} \mathrm{~J}-\mathrm{s}$
(b) $6.63 \times 10^{-30} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
(c) $6.63 \times 10^{-32} \mathrm{~kg}-\mathrm{m}^{2}$
(d) $6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}$

Ans. (d)
The value of Planck's constant is 6.63×10^{-34} and J -s is unit of the Planck's constant.

05 In a particular system, the unit of length, mass and time are chosen to be $10 \mathrm{~cm}, 10 \mathrm{~g}$ and 0.1 s respectively. The unit of force in this system will be equivalent to
[CBSE AIPMT 1994]
(a) 0.1 N
(b) 1 N
(c) 10 N
(d) 100 N

Ans. (a)

$$
\begin{aligned}
& \text { Force } F=\left[\mathrm{MLT}^{-2}\right] \\
& =(10 \mathrm{~g})(10 \mathrm{~cm})(0.1 \mathrm{~s})^{-2}
\end{aligned}
$$

Changing these units into MKS system

$$
\begin{aligned}
F & =\left(10^{-2} \mathrm{~kg}\right)\left(10^{-1} \mathrm{~m}\right)\left(10^{-1} \mathrm{~s}\right)^{-2} \\
& =10^{-1} \mathrm{~N}=0.1 \mathrm{~N}
\end{aligned}
$$

TOPIC 2

Errors in Measurement and Significant Figure

06 A screw gauge gives the following readings when used to measure the diameter of a wire Main scale reading : 0 mm Circular scale reading : 52 divisions Given that, 1 mm on main scale corresponds to 100 divisions on the circular scale. The diameter of the wire from the above data is
(a) 0.52 cm
[NEET 2021]
(b) 0.026 cm
(c) 0.26 cm
(d) 0.052 cm

Ans. (d)
Given, the main scale reading, $M S R=0$ The circular scale reading, CSR $=52$ divisions
Now, we shall determine the least count of the screw gauge,

$$
L C=\frac{p}{n}
$$

Here, p is the pitch of the screw, n is the number of circular divisions in one complete revolution.

$$
\begin{aligned}
\mathrm{LC} & =\frac{1}{100} \mathrm{~mm} \\
\Rightarrow L C & =0.01 \mathrm{~mm} \\
\Rightarrow L C & =0.001 \mathrm{~cm}
\end{aligned}
$$

Thus, the least count of the screw gauge is 0.001 cm .
Therefore, diameter of the wire of screw gauge,

$$
\begin{aligned}
& D=M S R+(C S R \times L C) \\
\Rightarrow \quad & D=0+(52 \times 0.001) \\
\Rightarrow & D=0.052 \mathrm{~cm}
\end{aligned}
$$

07 Time intervals measured by a clock give the following readings $1.25 \mathrm{~s}, 1.24 \mathrm{~s}, 1.27 \mathrm{~s}, 1.21 \mathrm{~s}$ and 1.28 s . What is the percentage relative error of the observations?
[NEET (Oct.) 2020]
(a) 2%
(b) 4%
(c) 16%
(d) 1.6%

Ans. (d)
Mean time interval

$$
\begin{aligned}
\bar{T} & =\frac{1.25+1.24+1.27+1.21+1.28}{5} \\
\Rightarrow \quad & =\frac{6.25}{5}=1.25 \mathrm{~s}
\end{aligned}
$$

Mean absolute error,

$$
\begin{aligned}
& \Delta \bar{T}=\frac{\left|\Delta T_{1}\right|+\left|\Delta T_{2}\right|+\left|\Delta T_{3}\right|+\left|\Delta T_{4}\right|+\left|\Delta T_{5}\right|}{5} \\
& \Rightarrow \begin{array}{r}
|1.25-1.25|+|1.25-1.24|+|1.25-1.27| \\
+|1.25-1.21|+|1.25-1.28| \\
5
\end{array} \\
& \Rightarrow=\frac{0+0.01+0.02+0.04+0.03}{5} \\
& =\frac{0.1}{5}=0.02 \mathrm{~s}
\end{aligned}
$$

\therefore Percentage relative error $=\frac{\Delta \bar{T}}{T} \times 100$

$$
=\frac{0.02}{1.25} \times 100=1.6 \%
$$

08 A screw gauge has least count of 0.01 mm and there are 50 divisions in its circular scale.
The pitch of the screw gauge is
[NEET (Sep.) 2020]
(a) 0.25 mm
(b) 0.5 mm
(c) 1.0 mm
(d) 0.01 mm

Ans. (b)
Given, least count $=0.01 \mathrm{~mm}$ Number of divisions on circular scale $=50$
Pitch of the screw gauge $=$ least count \times number of divisions on circular scale

$$
=0.01 \times 50=0.5 \mathrm{~mm}
$$

Hence, correct option is (b).
09 Taking into account of the significant figures, what is the value of $9.99 \mathrm{~m}-0.0099 \mathrm{~m}$?
[NEET (Sep.) 2020]
(a) 9.98 m
(b) 9.980 m
(c) 9.9 m
(d) 9.9801 m

Ans. (a)
The difference between 9.99 m and 0.0099 m is

$$
=9.99-0.0099=9.9801 \mathrm{~m}
$$

Taking significant figures into account, as both the values has two significant figures after decimal.
So, their difference will also have two significant figures after decimal, i.e. 9.98 m .

Hence, correct option is (a).
10 The main scale of a vernier calliper has n divisions/cm. n divisions of the vernier scale coincide with $(n-1)$ divisions of main scale. The least count of the vernier callipers is
[NEET (Odisha) 2019]
(a) $\frac{1}{(n+1)(n-1)} \mathrm{cm}$
(b) $\frac{1}{n} \mathrm{~cm}$
(c) $\frac{1}{n^{2}} \mathrm{~cm}$
(d) $\frac{1}{n(n+1)} \mathrm{cm}$

Ans. (c)
As it is given that ndivisions of vernier scale coincide with ($n-1$) divisions of main scale i.e.

$$
\begin{array}{ll}
& n(V S D)=(n-1) M S D \\
\Rightarrow & \tag{i}\\
& \\
&
\end{array}
$$

The least count is the difference between one main scale division (MSD) and one vernier scale division (VSD).
\therefore Least Count (LC) $=1$ MSD - 1VSD

$$
\begin{align*}
& =1 M S D-\frac{(n-1)}{n} M S D[\text { From Eq. } \tag{i}\\
& =\left(1-\frac{(n-1)}{n}\right) M S D=\frac{1}{n} M S D \\
& \text { Here, } 1 \mathrm{MSD}=\frac{1}{\mathrm{n}} \mathrm{~cm} \\
& \Rightarrow \quad L C=\frac{1}{n} \times \frac{1}{n} \mathrm{~cm}=\frac{1}{n^{2}} \mathrm{~cm}
\end{align*}
$$

11 A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm . The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm , the correct diameter of the ball is
[NEET 2018]
(a) 0.053 cm
(b) 0.525 cm
(c) 0.521 cm
(d) 0.529 cm

Ans. (d)
Given, least count of screw gauge, LC = 0.001 cm
Main scale reading,

$$
\mathrm{MSR}=5 \mathrm{~mm}=0.5 \mathrm{~cm}
$$

Number of coinciding divisions on the circular scale, i.e. Vernier scale reading, V SR $=25$
Here, zero error $=-0.004 \mathrm{~cm}$
Final reading obtained from the screw gauge is given as

$$
=\text { MSR }+ \text { VSR } \times L C-\text { zero error }
$$

Final reading from the screw gauge

$$
\begin{aligned}
& =0.5+25 \times 0.001-(-0.004) \\
& =0.5+0.025+0.004 \\
& =0.5+0.029 \\
& =0.529 \mathrm{~cm}
\end{aligned}
$$

Thus, the diameter of the ball is 0.529 cm .

12 In an experiment, four quantities a, b, c and d are measured with percentage error $1 \%, 2 \%, 3 \%$ and 4% respectively. Quantity P is calculated $P=\frac{a^{3} b^{2}}{c d} \%$. Error in P is
[NEET 2013]
(a) 14%
(b) 10%
(c) 7%
(d) 4%

Ans. (a)

$$
\begin{aligned}
& \text { As given, } P=\frac{a^{3} b^{2}}{c d} \\
& \therefore \quad \frac{\Delta P}{P} \times 100 \\
& =\left(\frac{3 \Delta a}{a}+\frac{2 \Delta b}{b}+\frac{\Delta c}{c}+\frac{\Delta d}{d}\right) \times 100 \\
& =3 \frac{\Delta a}{a} \times 100+2 \frac{\Delta b}{b} \times 100+\frac{\Delta c}{c} \times 100 \\
& \qquad+\frac{\Delta d}{d} \times 100 \\
& =3 \times 1+2 \times 2+3+4 \\
& =3+4+3+4=14 \%
\end{aligned}
$$

13 If the error in the measurement of radius of a sphere is 2%, then the error in the determination of volume of the sphere will be
[CBSE AIPMT 2008]
(a) 4%
(b) 6%
(c) 8%
(d) 2%

Ans. (b)
Volume of a sphere, $V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& \therefore \quad \frac{\Delta V}{V} \times 100=\frac{3 \times \Delta r}{r} \times 100 \\
& \text { Here } \quad \frac{\Delta r}{r} \times 100=2 \% \\
& \therefore \quad \frac{\Delta V}{V} \times 100=3 \times 2 \%=6 \%
\end{aligned}
$$

14 The density of a cube is measured by measuring its mass and length of its sides. If the maximum error in the measurement of mass and length are 4% and 3% respectively, the maximum error in the measurement of density will be
[CBSE AIPMT 1996]
(a) 7%
(b) 9%
(c) 12%
(d) 13%

Ans. (d)
As density $\rho=\frac{m}{V}=\frac{m}{l^{3}}$

$$
\begin{aligned}
\therefore \frac{\Delta \rho}{\rho} \times 100 & = \pm\left(\frac{\Delta m}{m}+3 \frac{\Delta l}{l}\right) \times 100 \% \\
& = \pm(4+3 \times 3)= \pm 13 \%
\end{aligned}
$$

15 The percentage errors in the measurement of mass and speed are 2% and 3% respectively. The error in kinetic energy obtained by measuring mass and speed, will be
[CBSE AIPMT 1995]
(a) 12%
(b) 10%
(c) 8%
(d) 2%

Ans. (c)
Kinetic energy $K=\frac{1}{2} m v^{2}$

$$
\begin{aligned}
& \therefore \quad \frac{\Delta K}{K} \times 100=\frac{\Delta m}{m} \times 100+2 \times \frac{\Delta v}{v} \times 100 \\
& \text { Here, } \frac{\Delta m}{m} \times 100=2 \% \\
& \Rightarrow \quad \frac{\Delta v}{v} \times 100=3 \% \\
& \therefore \quad \frac{\Delta K}{K} \times 100=2 \%+2 \times 3 \%=8 \%
\end{aligned}
$$

16 In a vernier callipers N divisions of vernier scale coincide with $N-1$ divisions of main scale (in which length of one division is 1 mm). The least count of the instrument should be
[CBSE AIPMT 1994]
(a) N
(b) $N-1$
(c) $\frac{1}{10 \mathrm{~N}}$
(d) $\frac{1}{(N-1)}$

Ans. (c)
As given $N V S D=(N-1) M S D$

$$
\text { VSD }=\text { Vernier scale division }
$$

MSD = Main scale division
$1 \mathrm{VSD}=\left(\frac{N-1}{N}\right) M S D$

$$
\text { LC = least count = 1MSD }-1 \mathrm{VSD}
$$

$$
\begin{aligned}
L C & =\left(1-\frac{N-1}{N}\right) M S D \\
& =\frac{1}{N} M S D=\frac{0.1}{N} \mathrm{~cm}=\frac{1}{10 \mathrm{~N}} \mathrm{~cm}
\end{aligned}
$$

17 A certain body weighs 22.42 g and has a measured volume of 4.7 cc . The possible error in the measurement of mass and volume are 0.01 g and 0.1 cc . Then, maximum error in the density will be
[CBSE AIPMT 1991]
(a) 22%
(b) 2%
(c) 0.2%
(d) 0.02%

Ans. (b)

$$
\begin{aligned}
\text { Density } & =\frac{\text { Mass }}{\text { Volume }} \\
\rho & =\frac{m}{V} \\
\therefore \quad \frac{\Delta \rho}{\rho} & =\frac{\Delta m}{m}+\frac{\Delta V}{V}
\end{aligned}
$$

Here, $\quad \Delta m=0.01, m=22.42$

$$
\Delta V=0.1, V=4.7
$$

$$
\therefore \quad \frac{\Delta \rho}{\rho}=\left(\frac{0.01}{22.42}+\frac{0.1}{4.7}\right) \times 100=2 \%
$$

TOPIC 3

Dimensions

18 If force [F] , acceleration [a] and time [T] are chosen as the fundamental physical quantities. Find the dimensions of energy.
[NEET 2021]
(a) $[F][a][T]$
(b) $[F][a]\left[T^{2}\right]$
(c) $[F][a]\left[T^{-1}\right]$
(d) $[F]\left[a^{-1}\right][T]$

Ans. (b)
Given, fundamental physical quantities are force $[F]$, acceleration [a] and time [T].
Now, we shall determine the dimensions of the energy.
Energy depends on force, acceleration and time as,

$$
\begin{aligned}
& {[E]=[F]^{a}[a]^{b}[T]^{c} } \\
\Rightarrow & {\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]=\left[\mathrm{MLT}^{-2}\right]^{a}\left[L T^{-2}\right]^{b}[T]^{c} } \\
\Rightarrow & {\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]=[M]^{a}[L]^{a+b}[T]^{-2 a-2 b+c} }
\end{aligned}
$$

Comparing the powers of M, L and T on both sides, we get

$$
\begin{aligned}
& \quad a=1, a+b=2 \\
& \text { and }-2 a-2 b+c=-2 \\
& \Rightarrow 1+b=2 \Rightarrow \quad b=1, \\
& \Rightarrow-2(1)-2(1)+c=-2 \Rightarrow c=2
\end{aligned}
$$

The dimensions of the energy are
$\left[F^{1}\right][a]^{1}[T]^{2}$.

19 If E and G respectively denote energy and gravitational constant. then $\frac{E}{G}$ has the dimensions of
[NEET 2021]
(a) $\left[\mathrm{M}^{2}\right]\left[\mathrm{L}^{-1}\right]\left[\mathrm{T}^{0}\right]$
(b) $[M]\left[L^{-1}\right]\left[T^{-1}\right]$
(c) $[\mathrm{M}]\left[\mathrm{L}^{0}\right]\left[\mathrm{T}^{0}\right]$
(d) $\left[\mathrm{M}^{2}\right]\left[\mathrm{L}^{-2}\right]\left[\mathrm{T}^{-1}\right]$

Ans. (a)
The dimensions of energy

$$
\begin{aligned}
& {[E]=[F] \cdot[d] } \\
\Rightarrow & {[E]=\left[M L T^{-2}\right][\mathrm{L}] \Rightarrow[E]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] }
\end{aligned}
$$

As we know that, the expression of gravitational force,

$$
\begin{aligned}
& F=\frac{G M_{1} M_{2}}{r^{2}} \Rightarrow G=\frac{F r^{2}}{M_{1} M_{2}} \\
\therefore & {[G]=\frac{[F]\left[r^{2}\right]}{\left[M_{1}\right]\left[M_{2}\right]} \Rightarrow[G]=\frac{\left[M L T^{-2}\right][L]^{2}}{[M][M]} } \\
\Rightarrow & {[G]=\left[M^{-1} L^{3} T^{-2}\right] }
\end{aligned}
$$

The dimensions of

$$
\frac{E}{G}=\frac{\left[M L^{2} T^{-2}\right]}{\left[M^{-1} L^{3} \mathrm{~T}^{-2}\right]} \Rightarrow\left[\frac{E}{G}\right]=\left[M^{2} L^{-1} T^{0}\right]
$$

20 Dimensions of stress are
[NEET (Sep.) 2020]
(a) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(b) $\left[\mathrm{ML}^{0} \mathrm{~T}^{-2}\right]$
(c) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
(d) $\left[\mathrm{MLT}^{-2}\right]$

Ans. (c)
\because Stress $=\frac{\text { Force }}{\text { Area }}$
$\begin{aligned} \therefore \text { Dimensions of stress } & =\frac{\left[M L T^{-2}\right]}{\left[L^{2}\right]} \\ = & {\left[M L^{-1} \mathrm{~T}^{-2}\right] }\end{aligned}$
Hence, correct option is (c).
21 A physical quantity of the dimensions of length that can be formed out of c, G and $\frac{e^{2}}{4 \pi \varepsilon_{0}}$ is [c is velocity of light, G is universal constant of gravitation and e is charge]
[NEET 2017]
(a) $\frac{1}{c^{2}}\left[G \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{1 / 2}$
(b) $c^{2}\left[G \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{1 / 2}$
(c) $\frac{1}{c^{2}}\left[\frac{e^{2}}{G 4 \pi \varepsilon_{0}}\right]^{1 / 2}$
(d) $\frac{1}{C} G \frac{e^{2}}{4 \pi \varepsilon_{0}}$

Ans. (a)
As force $F=\frac{e^{2}}{4 \pi \varepsilon_{0} r^{2}} \Rightarrow \frac{e^{2}}{4 \pi \varepsilon_{0}}=r^{2} \cdot F$
Putting dimensions of r and F, we get,

$$
\begin{equation*}
\Rightarrow\left[\frac{e^{2}}{4 \pi \varepsilon_{0}}\right]=\left[M L^{3} T^{-2}\right] \tag{i}
\end{equation*}
$$

$$
\begin{align*}
& \text { Also, force, } F=\frac{G m^{2}}{r^{2}} \\
& \Rightarrow \quad[G]=\frac{\left[M L T^{-2}\right]\left[L^{2}\right]}{\left[M^{2}\right]} \\
& \Rightarrow \quad[G]=\left[M^{-1} L^{3} T^{-2}\right] \tag{ii}\\
& \text { and } \quad\left[\frac{1}{c^{2}}\right]=\frac{1}{\left[L^{2} T^{-2}\right]}=\left[L^{-2} T^{2}\right] \tag{iii}
\end{align*}
$$

Now, checking optionwise,

$$
=\frac{1}{c^{2}}\left(\frac{G e^{2}}{4 \pi \varepsilon_{0}}\right)^{1 / 2}=\left[\mathrm{L}^{-2} \mathrm{~T}^{2}\right]\left[\mathrm{L}^{6} \mathrm{~T}^{-4}\right]^{1 / 2}=[\mathrm{L}]
$$

22 If energy (E), velocity (v) and time (T) are chosen as the fundamental quantities, the dimensional formula of surface tension will be
[CBSE AIPMT 2015]
(a) $\left[E v^{-2} T^{-1}\right]$
(b) $\left[E v^{-1} T^{-2}\right]$
(c) $\left[E v^{-2} T^{-2}\right]$
(d) $\left[\mathrm{E}^{-2} \mathrm{v}^{-1} \mathrm{~T}^{-3}\right]$

Ans. (c)
We know that
Surface tension $(S)=\frac{\text { Force }[F]}{\text { Length }[\mathrm{L}]}$

$$
\text { So, } \quad[S]=\frac{\left[M L T^{-2}\right]}{[L]}=\left[M L^{0} T^{-2}\right]
$$

Energy $(E)=$ Force \times displacement

$$
\begin{array}{lc}
\Rightarrow & {[E]=\left[M L^{2} T^{-2}\right]} \\
& \text { Velocity }(v)=\frac{\text { displacement }}{\text { time }} \\
\Rightarrow & {[v]=\left[L T^{-1}\right]} \\
\text { As, } & \\
& S \propto E^{a} v^{b} T^{c}
\end{array}
$$

where, a, b, c are constants.
From the principle of homogeneity,

$$
\begin{aligned}
& {[\mathrm{LHS}]=[\mathrm{RHS}] } \\
\Rightarrow & {\left[\mathrm{ML}^{0} \mathrm{~T}^{-2}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]^{a}\left[\mathrm{LT}^{-1}\right]^{b}[\mathrm{~T}]^{c} } \\
\Rightarrow \quad & {\left[\mathrm{ML}^{0} \mathrm{~T}^{-2}\right]=\left[\mathrm{M}^{a} \mathrm{~L}^{2 a+b} \mathrm{~T}^{-2 a-b+c}\right] }
\end{aligned}
$$

Equating the power on both sides, we get

$$
\begin{array}{ll}
& a=1,2 a+b=0, b=-2 \\
\Rightarrow & -2 a-b+c=-2 \\
\Rightarrow & c=(2 a+b)-2=0-2=-2 \\
\text { So } & {[S]=\left[E V^{-2} T^{-2}\right]=\left[E V^{-2} T^{-2}\right]}
\end{array}
$$

23 If dimensions of critical velocity v_{c} of a liquid flowing through a tube are expressed as $\left[\eta^{x} \rho^{y} r^{2}\right]$, where η, ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by
[CBSE AIPMT 2015]
(a) $1,-1,-1$
(b) $-1,-1,1$
(c) $-1,-1,-1$
(d) $1,1,1$

Ans. (a)
Key Concept According to principle of homogeneity of dimension states that, a physical quantity equation will be dimensionally correct, if the dimensions of all the terms occurring on both sides of the equations are same.
Given critical velocity of liquid flowing through a tube are expressed as

$$
v_{c} \propto \eta^{n} \rho^{y} r^{z}
$$

Coefficient of viscosity of liquid,

$$
\eta=\left[M L^{-1} T^{-1}\right]
$$

Density of liquid, $\rho=\left[\mathrm{ML}^{-3}\right]$
Radius of a tube $r=[\mathrm{L}]$
Critical velocity of liquid $v_{c}=\left[\mathrm{ML}^{0} \mathrm{~T}^{-1}\right]$

$$
\begin{aligned}
\Rightarrow & {\left[M^{0} L^{1} T^{-1}\right]=\left[M L^{-1} T^{-1}\right]^{x}\left[M L^{-3}\right]^{y}[L]^{z} } \\
& {\left[M^{0} L^{1} T^{-1}\right]=\left[M^{x+y} L^{-x-3 y+z} T^{-x}\right] }
\end{aligned}
$$

Comparing exponents of M, L and L, we get

$$
\begin{aligned}
\quad x+y & =0,-x-3 y+z=1,-x=-1 \\
\Rightarrow \quad & z=-1, x=1, y=-1
\end{aligned}
$$

24 If force (F), velocity (v) and time (T) are taken as fundamental units, then the dimensions of mass are
[CBSE AIPMT 2014]
(a) $\left[\mathrm{FVT}{ }^{-1}\right]$
(b) $\left[\mathrm{FvT}^{-2}\right]$
(c) $\left[\mathrm{Fv}^{-1} \mathrm{~T}^{-1}\right]$
(d) $\left[\mathrm{Fv}^{-1} \mathrm{~T}\right]$

Ans. (d)
We know that

$$
\begin{aligned}
F & =m a \\
\Rightarrow F & =\frac{m v}{t} \Rightarrow m=\frac{F t}{v} \\
{[M] } & =\frac{[F][T]}{[v]}=\left[F v^{-1} T\right]
\end{aligned}
$$

25 The dimensions of $\left(\mu_{0} \varepsilon_{0}\right)^{-1 / 2}$ are
[CBSE AIPMT 2012]
(a) $\left[L^{1 / 2} T^{-1 / 2}\right]$
(b) $\left[\mathrm{L}^{-1} \mathrm{~T}\right]$
(c) $\left[\mathrm{LT}^{-1}\right]$
(d) $\left[1^{1 / 2} \mathrm{~T}^{1 / 2}\right]$

Ans. (c)
$\left(\mu_{0} \varepsilon_{0}\right)^{-1 / 2}$ is the expression for velocity of light.

$$
\text { As } \quad c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}
$$

So, dimension of $c=\left[L T^{-1}\right]$
26 The dimensions of $\frac{1}{2} \varepsilon_{0} E^{2}$, where ε_{0} is permittivity of free space and E is electric field, are
[CBSE AIPMT 2010]
(a) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(b) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
(c) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
(d) $\left[\mathrm{MLT}^{-1}\right]$

Ans. (b)
As we know that,
Dimension of $\varepsilon_{0}=\left[M^{-1} L^{-3} T^{4} A^{2}\right]$
Dimension of $E=\left[M L T^{-3} A^{-1}\right]$
So, dimension of

$$
\begin{aligned}
\frac{1}{2} \varepsilon_{0} E^{2} & =\left[M^{-1} L^{-3} T^{4} A^{2}\right] \times\left[M L T^{-3} A^{-1}\right]^{2} \\
& =\left[M L^{-1} \mathrm{~T}^{-2}\right]
\end{aligned}
$$

27 If the dimensions of a physical quantity are given by $\left[M^{a} L^{b} T^{c}\right]$, then the physical quantity will be
[CBSE AIPMT 2009]
(a) pressure if $a=1, b=-1, c=-2$
(b) velocity if $a=1, b=0, c=-1$
(c) acceleration if $a=1, b=1, c=-2$
(d) force if $a=0, b=-1, c=-2$

Ans. (a)
(i) Dimensions of velocity $=\left[M^{0} L^{1} T^{-1}\right]$

$$
\text { Here, } a=0, b=1, c=-1
$$

(ii) Dimensions of acceleration

$$
\text { Here, } \quad a=0, b=1, c=-2=
$$

$$
=\left[M^{0} L^{1} T^{-2}\right]
$$

(iii) Dimensions of force $=\left[M^{1} L^{1} T^{-2}\right]$

$$
\text { Here, } a=1, b=1, T=-2
$$

(iv) Dimensions of pressure $=\left[\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]$
\therefore Here, $a=1, b=-1, c=-2$
\therefore The physical quantity is pressure.
28 Which two of the following five physical parameters have the same dimensions?
[CBSE AIPMT 2008]
(i) Energy density
(ii) Refractive index
(iii) Dielectric constant
(iv) Young's modulus
(v) Magnetic field
(a)(ii) and (iv)
(b)(iii) and (v)
(c) (i) and (iv)
(d) (i) and (v)

Ans. (c)

$$
\begin{aligned}
\text { Energy density } & =\frac{\text { Energy }}{\text { Volume }} \Rightarrow u=\frac{E}{V} \\
\text { Dimensions of } u & =\frac{\text { Dimensions of } E}{\text { Dimensions of } V} \\
& =\frac{\left[M L^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{3}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]
\end{aligned}
$$

Refractive index is a dimensionless quantity. Dielectric constant is a dimensionless quantity.
Young's modulus

$$
\begin{aligned}
& =\frac{\text { Longitudinal stress }}{\text { Longitudinal strain }}=\frac{F / A}{\Delta I / /}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right] \\
& \begin{aligned}
\text { Magnetic field } & =\frac{\text { Force }}{\text { Charge } \times \text { Velocity }}=\frac{F}{\mathrm{qv}} \\
& =\frac{\left[\mathrm{MLT}^{-2}\right]}{[\mathrm{AT}]\left[\mathrm{LT}^{-1}\right]}=\left[\mathrm{MT}^{-2} \mathrm{~A}^{-1}\right]
\end{aligned}
\end{aligned}
$$

29 Dimensions of resistance in an electrical circuit, in terms of dimension of mass M, of length L, of time T and of current l, would be
[CBSE AIPMT 2007]
(a) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{l}^{-1}\right]$
(b) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(c) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1} \mathrm{I}^{-1}\right]$
(d) $\left[\left.\mathrm{ML}^{2} \mathrm{~T}^{-3}\right|^{-2}\right]$

Ans. (d)
According to Ohm's law, $V \propto 1$ and $V=I R$

$$
\text { Resistance, } \begin{aligned}
R & =\frac{\text { Potential difference }}{\text { Current }} \\
& =\frac{V}{i}=\frac{W}{q i}
\end{aligned}
$$

$\binom{\because$ Potential difference is equal }{ to the work done per unit charge }
So, dimensions of R

$$
\begin{aligned}
& =\frac{\text { Dimensions of work }}{\text { Dimensions of charge }} \\
& \times \text { Dimensions of current } \\
& =\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{[\mathrm{IT}][\mathrm{I}]}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-2}\right]
\end{aligned}
$$

30 The velocity v of a particle at time t is given by $v=a t+\frac{b}{t+c}$, where a, b and c are constants. The dimensions of a, b and c are respectively [CBSE AIPMT 2006]
(a) $\left[\mathrm{LT}^{-2}\right],[\mathrm{L}]$ and $[\mathrm{T}]$
(b) $\left[L^{2}\right],[T]$ and $\left[\mathrm{LT}^{2}\right]$
(c) $\left[\mathrm{LT}^{2}\right],[\mathrm{LT}]$ and $[\mathrm{L}]$
(d) [L], [LT] and [T^{2}]

Ans. (a)
The given expression is

$$
v=a t+\frac{b}{t+c}
$$

From principle of homogeneity

$$
\begin{aligned}
& {[a][t]=[v]} \\
& {[a]=\frac{[v]}{[t]}=\frac{\left[\mathrm{LT}^{-1}\right]}{[\mathrm{T}]}=\left[\mathrm{LT}^{-2}\right]}
\end{aligned}
$$

Similarly, $[c]=[t]=[T]$
Further, $\frac{[b]}{[t+c]}=[v]$
or $\quad[b]=[v][t+c]$
or $[b]=\left[\mathrm{LT}^{-1}\right][\mathrm{T}]=[\mathrm{L}]$
31 The ratio of the dimensions of Planck's constant and that of the moment of inertia is the dimension of
[CBSE AIPMT 2005]
(a) frequency
(b) velocity
(c) angular momentum
(d) time

Ans. (a)
Energy carried by photon is given by

$$
\begin{array}{ll}
& E=h v \\
\Rightarrow \quad & \\
& h=\text { Planck's constant }=\frac{E}{v} \\
\therefore \quad & \quad[h]=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{T}^{-1}\right]}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right] \\
\text { and } \quad I=\text { moment of inertia }=M R^{2} \\
\Rightarrow \quad[I]=\left[\mathrm{ML}^{2}\right] \\
\text { Hence, } \frac{[h]}{[I]}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]}{\left[\mathrm{ML}^{2}\right]}=\left[\mathrm{T}^{-1}\right] \\
& =\frac{1}{[\mathrm{~T}]}=\text { dimension of frequency }
\end{array}
$$

Alternative

$$
\begin{aligned}
& \frac{h}{l}=\frac{E / v}{l} \\
& =\frac{E \times T}{l}=\frac{\left(\mathrm{kg}-\mathrm{m}^{2} / \mathrm{s}^{2}\right) \times \mathrm{s}}{\left(\mathrm{~kg}-\mathrm{m}^{2}\right)} \\
& =\frac{1}{\mathrm{~s}}=\frac{1}{\text { time }}=\text { frequency }
\end{aligned}
$$

Thus, dimensions of $\frac{h}{l}$ is same as that of frequency.
32 The dimensions of universal gravitational constant are
[CBSE AIPMT 2004, 1992]
(a) $\left[M^{-1} L^{3} T^{-2}\right]$
(b) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
(c) $\left[M^{-2} L^{3} T^{-2}\right]$
(d) $\left[\mathrm{M}^{-2} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$

Ans. (a)
According to Newton's law of gravitation, the force of attraction between two masses m_{1} and m_{2} separated by a distance r is,

$$
F=\frac{G m_{1} m_{2}}{r^{2}} \Rightarrow G=\frac{F r^{2}}{m_{1} m_{2}}
$$

Substituting the dimensions for the quantities on the right hand side, we obtain

$$
\text { Dimensions of } \begin{aligned}
G & =\frac{\left[M L T^{-2}\right]\left[\mathrm{L}^{2}\right]}{[M]^{2}} \\
& =\left[\mathrm{M}^{-1} L^{3} \mathrm{~T}^{-2}\right]
\end{aligned}
$$

33 Planck's constant has the dimensions of [CBSE AIPMT 2001]
(a) linear momentum
(b) angular momentum
(c) energy
(d) power

Ans. (b)

$$
\begin{aligned}
& E=h v \\
\Rightarrow h & =\text { Planck's constant }=\frac{\text { Energy }(E)}{\text { frequency }(v)} \\
\therefore & {[h]=\frac{E}{v}=\frac{\left[M L^{2} T^{-2}\right]}{\left[\mathrm{T}^{-1}\right]}=\left[M L^{2} \mathrm{~T}^{-1}\right] }
\end{aligned}
$$

(a) Linear momentum $=$ Mass \times velocity

$$
\text { or } \quad p=m \times v=[M]\left[\mathrm{LT}^{-1}\right]=\left[\mathrm{MLT}^{-1}\right]
$$

(b) Angular momentum

$$
\begin{aligned}
& =\text { Moment of inertia } \times \text { angular velocity } \\
& \text { or } \quad L=\mid \times \omega=m r^{2} \omega \quad\left[\because \mid=m r^{2}\right] \\
& \therefore \quad[L]=[M]\left[L^{2}\right]\left[T^{-1}\right]=\left[M L^{2} T^{-1}\right]
\end{aligned}
$$

(c) Energy $[E]=\left[M L^{2} T^{-2}\right]$
(d) Power $=$ Force \times velocity

$$
\begin{aligned}
& \text { or } \quad P & =F \times v \\
\therefore & {[P] } & =\left[\mathrm{MLT}^{-2}\right]\left[\mathrm{LT}^{-1}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]
\end{aligned}
$$

Hence, option (b) is correct.
34 A pair of physical quantities having same dimensional formula is
[CBSE AIPMT 2000]
(a) force and torque
(b) work and energy
(c) force and impulse
(d) linear momentum and angular momentum
Ans. (b)
(a) Force $=$ Mass \times acceleration

$$
\begin{aligned}
\operatorname{or} F & =m a \\
& =[M]\left[L T^{-2}\right]=\left[M L T^{-2}\right]
\end{aligned}
$$

Torque $=$ Moment of inertia \times angular acceleration

$$
\text { or } \tau=\mid \times \alpha=\left[\mathrm{ML}^{2}\right]\left[\mathrm{T}^{-2}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]
$$

(b) Work $=$ Force \times displacement

$$
\begin{aligned}
\text { or } W=F \times d & =\left[M L T^{-2}\right][\mathrm{L}]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] \\
\text { Energy } & =\frac{1}{2} \times \text { mass } \times(\text { velocity })^{2} \\
\text { or } K=\frac{1}{2} m v^{2} & =[\mathrm{M}]\left[\mathrm{LT}^{-1}\right]^{2}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]
\end{aligned}
$$

(c) Force as discussed above

$$
\begin{aligned}
& {[F]=\left[\mathrm{MLT}^{-2}\right] } \\
& \text { Impulse }=\text { Force } \times \text { time-interval } \\
\therefore \quad & {[I]=\left[\mathrm{MLT}^{-2}\right][\mathrm{T}]=\left[\mathrm{MLT}^{-1}\right] }
\end{aligned}
$$

(d) Linear momentum $=$ Mass \times velocity

$$
\begin{array}{llrl}
\text { or } & p=m v \\
\therefore & {[p]} & =[M]\left[L T^{-1}\right]=\left[M L T^{-1}\right]
\end{array}
$$

Angular momentum = Moment of inertia
× angular velocity

$$
\text { or } \quad[L]=[\mathrm{I}] \times[\omega]
$$

$$
\therefore \quad[L]=\left[M L^{2}\right]\left[T^{-1}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]
$$

Hence, we observe that choice (b) is correct.
35 The dimensional formula for magnetic flux is [CBSE AIPMT 1999]
(a) $\left[M L^{2} T^{-2} A^{-1}\right]$
(b) $\left[M L^{3} T^{-2} A^{-2}\right]$
(c) $\left[M^{0} L^{-2} T^{2} A^{-2}\right]$
(d) $\left[M L^{2} T^{-1} A^{2}\right]$

Ans. (a)
Mathematically, magnetic flux

$$
\begin{equation*}
\phi=B A \tag{i}
\end{equation*}
$$

but magnetic force

$$
F=B i l \text { or } B=\frac{F}{i l}
$$

Putting the value of B in Eq. (i), we have

$$
\phi=\frac{F}{i l} \mathrm{~A}
$$

Thus, dimensions of $\phi=\frac{\left[\mathrm{MLT}^{-2}\right]\left[\mathrm{L}^{2}\right]}{[\mathrm{AL}]}$

$$
=\left[M L^{2} T^{-2} A^{-1}\right]
$$

36 The force F on a sphere of radius r moving in a medium with velocity v is given by $F=6 \pi \eta r v$. The dimensions of η are
[CBSE AIPMT 1997]
(a) $\left[\mathrm{ML}^{-3}\right]$
(b) $\left[\mathrm{MLT}^{-2}\right]$
(c) $\left[\mathrm{MT}^{-1}\right]$
(d) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$

Ans. (d)
Viscous force on a sphere of radius r is

$$
\begin{gathered}
F=6 \pi \eta v \Rightarrow \eta=\frac{F}{6 \pi r v} \\
{[\eta]=\frac{[F]}{[r][v]}=\frac{\left[\mathrm{MLT}^{-2}\right]}{[\mathrm{L}]\left[\mathrm{LT}^{-1}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]}
\end{gathered}
$$

37 Which of the following will have the dimensions of time?
[CBSE AIPMT 1996]
(a) $\llcorner C$
(b) $\frac{R}{L}$
(c) $\frac{L}{R}$
(d) $\frac{C}{L}$

Ans. (c)
$\frac{L}{R}$ is time constant of $R-L$ circuit so, dimensions of $\frac{L}{R}$ is same as that of time.
Alternative

$$
\frac{\text { Dimensions of } L}{\text { Dimensions of } R}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]}=[\mathrm{T}]
$$

38 An equation is given as $\left(p+\frac{a}{V^{2}}\right)=b \frac{\theta}{V}$, where $p=$ pressure, $V=$ volume and $\theta=$ absolute temperature. If a and b are constants, then dimensions of a will be
[CBSE AIPMT 1996]
(a) $\left[\mathrm{ML}^{5} \mathrm{~T}^{-2}\right]$
(b) $\left[M^{-1} L^{5} \mathrm{~T}^{2}\right]$
(c) $\left[\mathrm{ML}^{-5} \mathrm{~T}^{-1}\right]$
(d) $\left[\mathrm{ML}^{5} \mathrm{~T}\right]$

Ans. (a)
From principle of homogeneity of dimensions.
Dimensions of $p=$ dimensions of $\frac{a}{V^{2}}$

$$
\begin{aligned}
p & =\frac{a}{V^{2}} \Rightarrow a=p V^{2} \\
& =\left[M L^{-1} T^{-2}\right]\left[L^{3}\right]^{2}=\left[M L^{5} T^{-2}\right]
\end{aligned}
$$

39 Which of the following is a dimensional constant?
[CBSE AIPMT 1995]
(a) Refractive index
(b) Poisson's ratio
(c) Relative density
(d) Gravitational constant

Ans. (d)
A quantity which has dimensions and also has a constant value is called dimensional constant.
Here, gravitational constant (G) is a dimensional constant.

40 Turpentine oil is flowing through a tube of length I and radius r. The pressure difference between the two ends of the tube is p. The viscosity of oil is given by

$$
\eta=\frac{p\left(r^{2}-x^{2}\right)}{4 v l}
$$

where, v is the velocity of oil at distance x from the axis of the tube. The dimensions of η are
[CBSE AIPMT 1993]
(a) $\left[\mathrm{M}^{0} L^{0} \mathrm{~T}^{0}\right]$
(b) $\left[\mathrm{MLT}^{-1}\right]$
(c) $\left[M L^{2} T^{-2}\right]$
(d) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$

Ans. (d)
Pressure

$$
\begin{aligned}
& (p)=\frac{\text { Force }}{\text { Area }}=\frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^{2}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right] \\
& \text { Velocity, } \quad v=\left[\mathrm{LT}^{-1}\right]
\end{aligned}
$$

From principle of homogeneity, the dimensions of r^{2} and x^{2} are same.
So, the dimensions of viscosity,

$$
\eta=\frac{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\left[\mathrm{L}^{2}\right]}{\left[\mathrm{LT}^{-1}\right][\mathrm{L}]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]
$$

41 The time dependence of physical quantity p is given by $p=p_{0} \exp$ $\left(-\alpha t^{2}\right)$, where α is a constant and t is the time. The constant α
[CBSE AIPMT 1992]
(a) is dimensionless
(b) has dimensions $\left[\mathrm{T}^{-2}\right]$
(c) has dimensions $\left[\mathrm{T}^{2}\right]$
(d) has dimensions of p

Ans. (b)

$$
p=p_{0} \exp \left(-\alpha t^{2}\right)
$$

As powers of exponential quantity is dimensionless, so αt^{2} is dimensionless.

$$
\begin{aligned}
& \text { or } \quad \alpha t^{2}=\text { dimensionless }=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right] \\
& \therefore \quad \alpha=\frac{1}{t^{2}}=\frac{1}{\left[\mathrm{~T}^{2}\right]}=\left[\mathrm{T}^{-2}\right]
\end{aligned}
$$

42 If p represents radiation pressure, c represents speed of light and S represents radiation energy striking unit area per sec. The non-zero integers x, y, z such that $p^{x} S^{y} c^{z}$ is dimensionless are
[CBSE AIPMT 1992]
(a) $x=1, y=1, z=1$
(b) $x=-1, y=1, z=1$
(c) $x=1, y=-1, z=1$
(d) $x=1, y=1, z=-1$

Ans. (c)
Radiation pressure, $p=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$

$$
\text { Velocity of light, } c=\left[\mathrm{LT}^{-1}\right]
$$

Energy striking unit area per second

$$
S=\frac{\left[M L^{2} T^{-2}\right]}{\left[L^{2} T\right]}=\left[M T^{-3}\right]
$$

Now, $p^{x} S^{y} c^{z}$ is dimensionless.
$\therefore\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]=\mathrm{p}^{x} S^{y} \mathrm{C}^{z}$
or $\left[M^{0} L^{0} T^{0}\right]=\left[M^{1} L^{-1} T^{-2}\right]^{x}\left[M^{1} T^{-3}\right]^{y}\left[L^{1} T^{-1}\right]^{z}$
or $\left[M^{0} L^{0} T^{0}\right]=[M]^{x+y}[L]^{-x+z}[T]^{-2 x-3 y-z}$
From principle of homogeneity of dimensions

$$
\begin{gather*}
x+y=0 \tag{i}\\
-x+z=0 \tag{ii}\\
-2 x-3 y-z=0 \tag{iii}
\end{gather*}
$$

Solving Eqs. (i), (ii) and (iii), we get

$$
x=1, \quad y=-1, \quad z=1
$$

43 The dimensional formula for permeability of free space, μ_{0} is
[CBSE AIPMT 1991]
(a) $\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]$
(b) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{2} \mathrm{~A}^{-2}\right]$
(c) $\left[M L^{-1} T^{-2} A^{2}\right]$
(d) $\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-1}\right]$

Ans. (a)
From Biot-Savart law

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{|d| \sin \theta}{r^{2}}
$$

$$
\begin{aligned}
& |d|=\text { current element } \\
& r=\text { displacement vector }
\end{aligned}
$$

$$
\begin{aligned}
\mu_{0} & =\frac{4 \pi r^{2}(d B)}{|d| \sin \theta}=\frac{\left[\mathrm{L}^{2}\right]\left[\mathrm{MT}^{-2} \mathrm{~A}^{-1}\right]}{[\mathrm{A}][\mathrm{L}]} \\
& =\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]
\end{aligned}
$$

44 The frequency of vibration f of a mass m suspended from a spring of spring constant k is given by a relation of the type $f=C m^{x} k^{y}$, where C is a dimensionless constant. The values of x and y are
[CBSE AIPMT 1990]
(a) $x=\frac{1}{2}, y=\frac{1}{2}$
(b) $x=-\frac{1}{2}, y=-\frac{1}{2}$
(c) $x=\frac{1}{2}, y=-\frac{1}{2}$
(d) $x=-\frac{1}{2}, y=\frac{1}{2}$

Ans. (d)
As $f=C m^{x} k^{y}$
$\therefore($ Dimension of $f)=C(\text { dimension of } m)^{x}$
$\times(\text { dimensions of } k)^{y}$
$\left[\mathrm{T}^{-1}\right]=\mathrm{C}[\mathrm{M}]^{x}\left[\mathrm{MT}^{-2}\right]^{y}$
...(i)
$\left(\right.$ where, $\left.k=\frac{\text { force }}{\text { length }}\right)$
Applying the principle of homogeneity of dimensions, we get

$$
\begin{aligned}
& x+y=0,-2 y=-1 \text { or } y=\frac{1}{2} \\
& \therefore \quad x=-\frac{1}{2}
\end{aligned}
$$

45 According to Newton, the viscous force acting between liquid layers of area A and velocity gradient $\frac{\Delta v}{\Delta z}$ is given by $F=-\eta A \frac{d v}{d z}$, where η is constant called [CbSE AIPMT 1990] (a) $\left[\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]$
(b) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
(c) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(d) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$

Ans. (d)
As $F=-\eta A \frac{d v}{d z} \Rightarrow \eta=-\frac{F}{A\left(\frac{d v}{d z}\right)}$
As $F=\left[M L T^{-2}\right], A=\left[\mathrm{L}^{2}\right]$
$d v=\left[L T^{-1}\right], d z=[L]$
$\therefore \quad \eta=\frac{\left[\mathrm{MLT}^{-2}\right][\mathrm{L}]}{\left[\mathrm{L}^{2}\right]\left[\mathrm{LT}^{-1}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$
46 The dimensional formula of pressure is
[CBSE AIPMT 1990]
(a) $\left[\mathrm{MLT}^{-2}\right]$
(b) $\left[M L^{-1} \mathrm{~T}^{2}\right]$
(c) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
(d) $\left[\mathrm{MLT}^{-2}\right]$

Ans. (c)

$$
\begin{aligned}
\text { Pressure } & =\frac{\text { Force }}{\text { Area }}=\frac{F}{A}=\frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^{2}\right]} \\
& =\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]
\end{aligned}
$$

47 The dimensional formula of torque is
[CBSE AIPMT 1989]
(a) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(b) $\left[\mathrm{MLT}^{-2}\right]$
(c) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
(d) $\left[\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]$

Ans. (a)

Torque $\tau=\mathbf{r} \times \mathbf{F}$

Dimensions of $\tau=$ dimension of
$\mathbf{r} \times$ dimension of \mathbf{F}

$$
=[L]\left[M L T^{-2}\right]=\left[M L^{2} T^{-2}\right]
$$

48 If $x=a t+b t^{2}$, where x is the distance travelled by the body in kilometer while t is the time in second, then the unit of b is
[CBSE AIPMT 1989]
(a) km / s
(b) km-s
(c) $\mathrm{km} / \mathrm{s}^{2}$
(d) $\mathrm{km}-\mathrm{s}^{2}$

Ans. (c)
Ans.As $x=a t+b t^{2}$
According to the concept of dimensional analysis and principle of homogeneity
$\therefore \quad$ unit of $x=$ unit of $b t^{2}$
$\therefore \quad$ unit of $b=\frac{\text { unit of } x}{\text { unit of } t^{2}}=\mathrm{km} / \mathrm{s}^{2}$
49 Dimensional formula of self-inductance is [CbSE AIPMT 1989]
(a) $\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]$
(b) $\left[M L^{2} T^{-1} A^{-2}\right]$
(c) $\left[M L^{2} T^{-2} A^{-2}\right]$
(d) $\left[M L^{2} T^{-2} A^{-1}\right]$

Ans. (c)
As we know that emf induced in the inductors is given by

$$
\begin{aligned}
e & =L \frac{d i}{d t} \Rightarrow L=\frac{e d t}{d i}=\frac{W}{q} \cdot \frac{d t}{d i} \\
& =\frac{\left[M L^{2} T^{-2}\right][T]}{[A T][A]}=\left[M L^{2} T^{-2} A^{-2}\right]
\end{aligned}
$$

50 Of the following quantities, which one has dimensions different from the remaining three?
[CBSE AIPMT 1989]
(a) Energy per unit volume
(b) Force per unit area
(c) Product of voltage and charge per unit volume
(d) Angular momentum

Ans. (d)
Dimensions of energy per unit volume

$$
\begin{aligned}
& =\frac{\text { Dimensions of energy }}{\text { Dimensions of volume }} \\
& =\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{3}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]
\end{aligned}
$$

Dimensions of force per unit area

$$
\begin{aligned}
& =\frac{\text { Dimensions of force }}{\text { Dimensions of area }}=\frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^{2}\right]} \\
& =\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]
\end{aligned}
$$

Voltage \times Charge/ Volume

$$
\begin{aligned}
& =\frac{\left(\frac{W}{q}\right) \times(i t)}{I^{3}}=\frac{(W)}{\left(l^{3}\right)}=\frac{\left[M L^{2} T^{-2}\right]}{\left[L^{3}\right]} \\
& =\left[M L^{-1} \mathrm{~T}^{-2}\right]
\end{aligned}
$$

Angular momentum

$$
\begin{aligned}
& =(r)(p)=(r)(m v)=[L][M]\left[L^{-1}\right] \\
& =\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]
\end{aligned}
$$

So, dimensions of angular momentum is different from other three.

51 The dimensional formula for angular momentum is
[CBSE AIPMT 1988]
(a) $\left[M^{0} L^{2} T^{-2}\right]$
(b) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
(c) $\left[\mathrm{MLT}^{-1}\right]$
(d) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$

Ans. (b)
Angular momentum

$$
L=r \times p=r \times m v
$$

\therefore Dimensional formula for angular momentum

$$
=[\mathrm{L}][\mathrm{M}]\left[\mathrm{LT}^{-1}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]
$$

$\overline{52}$ If C and R denote capacitance and resistance respectively, then the dimensional formula of $C R$ is
[CBSE AIPMT 1988]
(a) $\left[M^{0} L^{0} \mathrm{~T}\right]$
(b) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
(c) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
(d) Not expressible in terms of [MLT]

Ans. (a)

$$
\begin{aligned}
\because C & =\frac{q}{V}=\frac{q}{\frac{W}{q}}=\frac{q^{2}}{W}=\frac{(i t)^{2}}{F \cdot x}=\frac{[A T]^{2}}{\left[M L^{2} T^{-2}\right]} \\
& =\left[M^{-1} L^{-2} T^{4} A^{2}\right] \text { and } R=\frac{V}{i}=\frac{W}{q i} \\
& =\frac{F \cdot x}{i^{2} t}=\frac{\left[M L^{2} T^{-2}\right]}{[A T][A]}=\left[M L^{2} T^{-3} A^{-2}\right]
\end{aligned}
$$

\therefore Dimensional formula of $C R$

$$
=\left[M^{-1} L^{-2} T^{4} A^{2}\right]\left[M L^{2} T^{-3} A^{-2}\right]=\left[M^{0} L^{0} T\right]
$$

