10

Redox Reactions and Electrochemistry

TOPIC 1

Redox Reactions

01 The oxidation state of Cr in CrO_{5} is
[NEET (Odisha) 2019]
(a) -6
(b) +12
(c) +6
(d) +4

Ans. (c)
The structure of CrO_{5} is

Oxidation state of Cr is +6 due to the presence of two peroxide linkages, which can be calculated as.
In $\mathrm{CrO}\left(\mathrm{O}_{2}\right)_{2}$, let the oxidation state of Cr bex

$$
\begin{aligned}
x+(-1) 4+(-2) & =0 \\
x-6 & =0
\end{aligned}
$$

02 In acidic medium, $\mathrm{H}_{2} \mathrm{O}_{2}$ changes $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ to CrO_{5} which has two ($-0-0-$) bonds. Oxidation state of Cr in CrO_{5} is
[CBSE AIPMT 2014]
(a) +5
(b) +3
(c) +6
(d) -10

Ans. (c)
When $\mathrm{H}_{2} \mathrm{O}_{2}$ is added to an acidified solution of a dichromate $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$, a deep blue coloured complex, chromic peroxide CrO_{5} [or $\mathrm{CrO}\left(\mathrm{O}_{2}\right)_{2}$] is formed. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{H}^{+}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \underbrace{2 \mathrm{CrO}\left(\mathrm{O}_{2}\right)_{2}}_{\text {Chromic peroxide }}$
[blue coloured complex] $+5 \mathrm{H}_{2} \mathrm{O}$
This deep blue coloured complex has the following structure

Oxidation state of Cr in CrO_{5} is +6 due to the presence of two peroxide linkages which can be calculated as

$$
\begin{aligned}
& \underset{[\text { For Cr] }]}{x}+\underset{[\text { For } 0-0]}{(-1) \times 4+\underset{[\text { For } 0]}{1 \times(-2)}} \\
& \quad x-6=0 ; \quad x=+6
\end{aligned}
$$

03 Oxidation state of Fe in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is
[CBSE AIPMT 1999]
(a) $\frac{3}{2}$
(b) $\frac{4}{5}$
(c) $\frac{5}{4}$
(d) $\frac{8}{3}$

Ans. (d)
Oxidation state of Fe in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is calculated as

$$
\begin{array}{r}
x{ }_{\mathrm{Fe}}^{3} \mathrm{O} \mathrm{O}_{4} \\
3 x+(-2 \times 4)=0 \\
3 x=+8 \\
x=+\frac{8}{3}
\end{array}
$$

04 The oxidation state of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is
[CBSE AIPMT 1988]
(a) +5
(b) +3
(c) +6
(d) +7

Ans. (c)
Let the oxidation state of Cr is x $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

$$
\begin{aligned}
\therefore \quad 2(+1)+2 x+7(-2) & =0 \\
2+2 x-14 & =0 \\
2 x-12 & =0 \\
2 x & =12 \\
x=\frac{12}{2} & =+6
\end{aligned}
$$

TOPIC 2

Electrolytic Conductance, Electrolysis and Its Quantitative Aspect

05 The molar conductance of NaCl , HCl and $\mathrm{CH}_{3} \mathrm{COONa}$ at infinite dilution are 126.45, 426.16 and 91.0 $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ respectively. The molar conductance of $\mathrm{CH}_{3} \mathrm{COOH}$ at infinite dilution is
Choose the right option for your answer.
[NEET 2021]
(a) $201.28 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(b) $390.71 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(c) $698.28 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
(d) $540.48 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Ans. (b)
Molar conductance of NaCl ,

$$
\lambda_{\mathrm{NaCl}}^{\circ}=126.45 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}
$$

Molar conductance of HCl ,

$$
\lambda_{\mathrm{HCl}}^{\circ}=426.16 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}
$$

Molar conductance of $\mathrm{CH}_{3} \mathrm{CO}-\overline{\mathrm{Na}}$,

$$
\lambda_{\mathrm{CH}_{3} \mathrm{COONa}}^{0}=91.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}
$$

According to Kohlrausch's law;

$$
\begin{align*}
& \lambda_{\mathrm{HCl}}^{0}=\lambda_{\mathrm{H}^{+}}^{0}+\lambda_{\mathrm{Cl}^{-}}^{0} \tag{i}\\
& \lambda_{\mathrm{NaCl}}^{\circ}=\lambda_{\mathrm{Na}^{+}}^{\circ}+\lambda_{\mathrm{Cl}^{-}}^{\circ} \tag{ii}\\
& \lambda_{\mathrm{CH}_{3} \mathrm{COONa}}{ }^{+}=\lambda_{\mathrm{Na}^{+}}^{\circ}+\lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{\circ} \tag{iii}\\
& \lambda_{\mathrm{CH}_{3} \mathrm{COOH}}^{\circ}=\lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{\circ}+\lambda_{\mathrm{H}^{+}}^{\circ} \\
& \lambda_{\mathrm{CH}_{3} \mathrm{COOH}}^{0}=\left(\lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{\circ}+\lambda_{\mathrm{Na}^{+}}^{\circ}\right) \\
& +\left(\lambda_{\mathrm{H}^{+}}^{0}+\lambda_{\mathrm{Cl}^{-}}^{0}\right)-\left(\lambda_{\mathrm{Na}^{+}}^{0}+\lambda_{\mathrm{Cl}^{-}}^{0}\right) \\
& \lambda_{\mathrm{CH}_{3} \mathrm{COOH}}^{0}=\lambda_{\mathrm{CH}_{3} \mathrm{COONa}^{+}}^{0}+\lambda_{\mathrm{HCl}}^{0}-\lambda_{\mathrm{NaCl}}^{0}
\end{align*}
$$

$$
\begin{aligned}
& \lambda_{\mathrm{CH}_{3} \mathrm{COOH}}^{\circ}=91.0+426.16-126.45 \\
& \lambda_{\mathrm{CH}_{3} \mathrm{COOH}}^{\circ}=390.71 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}
\end{aligned}
$$

06 The molar conductivity of 0.007 M acetic acid is $20 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. What is the dissociation constant of acetic acid? Choose the correct option.

$$
\begin{aligned}
& {\left[\lambda_{\mathrm{H}}^{\circ}=350 \mathrm{Sm}^{2} \mathrm{~mol}^{-1},\right.} \\
& \left.\lambda_{\mathrm{CH}_{3} \mathrm{CoO}^{-}}=50 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right]
\end{aligned}
$$

[NEET 2021]
(a) $1.75 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}$
(b) $2.50 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}$
(c) $1.75 \times 10^{-5} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}$
(d) $2.50 \times 10^{-5} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}$

Ans. (c)
$\lambda_{\mathrm{CH}_{3} \mathrm{COOH}}=20 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
Concentration of $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{C}=0.007 \mathrm{M}$

$$
\begin{aligned}
\lambda_{\mathrm{H}^{+}}^{\circ} & =350 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \\
\lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{\circ} & =50 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}
\end{aligned}
$$

According to Kohlrausch's law,

$$
\begin{aligned}
\lambda_{\mathrm{CH}_{3} \mathrm{COOH}}^{0} & =\lambda_{\mathrm{H}^{+}}^{\circ}+\lambda_{\mathrm{CH}_{3} \mathrm{COOO}}^{-} \\
\lambda_{\mathrm{CH}_{3} \mathrm{COH}}^{\circ} & =350+50 \\
& =400 \mathrm{sm}^{2} \mathrm{~mol}^{-1}
\end{aligned}
$$

Degree of dissociation,

Equilibrium constant,

$$
\begin{aligned}
& k=\frac{C^{2} \alpha^{2}}{C(1-\alpha)}=\frac{C \alpha^{2}}{1-\alpha} \\
& \begin{aligned}
& \text { As } \alpha \ll 1 ; 1-\alpha \approx 1 \\
& k=C \alpha^{2}=0.007 \times(0.05)^{2} \\
&=0.007 \times 25 \times 10^{-4} \\
&=1.75 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}
\end{aligned}
\end{aligned}
$$

07 On electrolysis of dilute sulphuric acid using platinum (Pt) electrode, the product obtained at anode will be
[NEET (Sep.) 2020]
(a) oxygen gas
(b) $\mathrm{H}_{2} \mathrm{~S}$ gas
(c) SO_{2} gas
(d) hydrogen gas

Ans. (a)
Dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$ and they show electrolytic dissociation as,

$$
\begin{aligned}
& \underset{\text { Strong electrolyte }}{\mathrm{H}_{2} \mathrm{SO}_{4}} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \\
& \text { as it is dilute }
\end{aligned}
$$

$$
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

Reaction at cathode (Pt)

$$
2 \mathrm{H}^{+}+2 e^{-} \longrightarrow \mathrm{H}_{2} \uparrow
$$

Reaction at anode (Pt)

$$
4 \mathrm{OH}^{-}-4 \mathrm{e}^{-} \longrightarrow \mathrm{O}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O}
$$

We get, O_{2} gas at anode.
$\overline{08}$ The number of Faradays (F) required to produce 20 g of calcium from molten CaCl_{2} (Atomic mass of $\mathrm{Ca}=40 \mathrm{~g} \mathrm{~mol}^{-1}$) is
[NEET (Sep.) 2020]
(a) 2
(b) 3
(c) 4
(d) 1

Ans. (d)

$$
\underset{\text { Molten }}{\mathrm{CaCl}_{2} \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-}}
$$

At cathode $\mathrm{Ca}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ca}$ (Reduction)
According to Faraday's first law,
Charge passed in Faraday = Gram equivalent of product

$$
\begin{aligned}
& =\frac{\text { Given mass }}{\text { Atomic mass }} \times \text { no. of } e^{-} \text {released } \\
& =\frac{20}{40} \times 2=1 \mathrm{~F}
\end{aligned}
$$

So, one Faraday (F) is required for the process.

09 Which of the following reactions are disproportionation reaction?
(i) $2 \mathrm{Cu}^{+} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}^{0}$
(ii) $3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+} \longrightarrow 2 \mathrm{MnO}_{4}^{-}$

$$
+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

(iii) $2 \mathrm{KMnO}_{4} \xrightarrow{\Delta} \mathrm{~K}_{2} \mathrm{MnO}_{4}$

$$
+\mathrm{MnO}_{2}+\mathrm{O}_{2}
$$

(iv) $2 \mathrm{MnO}_{4}^{-}+3 \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow$

$$
5 \mathrm{MnO}_{2}+4 \mathrm{H}^{\oplus}
$$

Select the correct option from the following. [NEET (National) 2019]
(a) (i), (ii) and (iii)
(b) (i), (iii) and (iv)
(c) (i) and (iv) only
(d) (i) and (ii) only

Ans. (d)
The reaction in which the same species is simultaneously oxidised and reduced are called disporportionation reactions. Let us, consider the given reaction one by one:
(i) $2 \mathrm{Cu}^{+} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}^{0}$

The above reaction is a
disproportionation reaction as $\mathrm{Cu}(+1)$ is oxidised to $\mathrm{Cu}(+2)$ and reduced to $\mathrm{Cu}(0)$.
(ii) $3 \stackrel{+6}{\mathrm{MnO}_{4}^{2-}}+4 \mathrm{H}^{+} \longrightarrow 2 \stackrel{+7}{\mathrm{MnO}_{4}^{-}}+\stackrel{+4}{\mathrm{MnO}_{2}}$ $+2 \mathrm{H}_{2} \mathrm{O}$
The above reaction is a disproportionation reaction as Mn $(+6)$ is oxidised to $\mathrm{MnO}_{4}^{-}\left(\mathrm{Mn}^{+7}\right)$ and reduced to $\mathrm{MnO}_{2}(\stackrel{+}{\mathrm{Mn}})$.
(iii) $2 \stackrel{+7}{\mathrm{KMnO}_{4}} \xrightarrow{\Delta} \mathrm{~K}_{2} \stackrel{+6}{\mathrm{MnO}_{4}}+\stackrel{+4}{\mathrm{MnO}_{2}}+\mathrm{O}_{2}$

The above reaction is not a disproportionation reaction as Mn $(+7)$ is only reduced to $\mathrm{K}_{2} \mathrm{MnO}_{4}\left(\mathrm{Mn}^{+6}\right)$ and $\mathrm{MnO}_{2}\left(\mathrm{Mn}^{+4}\right)$.
(iv) $2 \stackrel{+7}{\mathrm{MnO}_{4}^{-}}+3 \mathrm{Mn}^{2+}+\xrightarrow{2 \mathrm{H}_{2} \mathrm{O}} 5 \mathrm{MnO}_{2}^{+4}+4 \mathrm{H}^{+}$

The above reaction is not a disproportionation reaction as $\mathrm{Mn}(+7)$ is only reduced to $\mathrm{MnO}_{2}(+4)$.
Hence, option (d) is correct.
10 Following limiting molar conductivities are given as $\lambda_{\mathrm{m}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)}^{\circ}=x \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
$\lambda_{\mathrm{m}\left(\mathrm{K}_{2} \mathrm{SO}_{4}\right)}^{0}=y \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
$\lambda_{\mathrm{m}\left(\mathrm{CH}_{2} \mathrm{COOK}\right)}^{\circ}=z \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
$\lambda_{\mathrm{m}}^{\circ}\left(\right.$ in $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$) for $\mathrm{CH}_{3} \mathrm{COOH}$
will be
[NEET (Odisha) 2019]
(a) $x-y+2 z$
(b) $x+y-z$
(c) $x-y+z$
(d) $\frac{(x-y)}{2}+z$

Ans. (d)
Key Idea According to Kohlrausch's law,

$$
\lambda_{m}^{0} \text { for } A_{x} B_{y}=x \lambda_{(A)^{y}+}^{0}+y \lambda_{(B)^{x-}}^{0}
$$

where, $\lambda_{m}^{\circ}=$ limiting molar conductivity of electrolyte and $\lambda_{(A)^{\circ}+}^{o}$ and $\lambda_{(B)^{x-}}^{o}$ are the limiting molar conductivities of cation $\left(A^{y+}\right)$ and anion $\left(B^{x-}\right)$, respectively.
Given

$$
\begin{align*}
& \lambda_{\mathrm{m}_{\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)}^{\circ}}=2 \lambda_{\mathrm{H}^{+}}^{\circ}+\lambda_{\mathrm{SO}_{4}^{2-}}^{\varrho}=x \mathrm{Sc}^{2} \mathrm{~mol}^{-} \tag{i}\\
& \lambda_{\mathrm{m}_{\left(\mathrm{K}_{2} \mathrm{SO}_{4}\right)}^{0}}=2 \lambda_{\mathrm{K}^{+}}^{0}+\lambda_{\mathrm{SO}_{4}^{2-}}^{0} \\
& =y \mathrm{Scm}^{2} \mathrm{~mol}^{-1} \text {. } \tag{ii}\\
& \lambda_{\mathrm{m}}^{0}\left(\mathrm{CH}_{3} \mathrm{COOK}\right)=\lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{0}+\lambda_{\mathrm{K}^{+}}^{0} \\
& =z \mathrm{Scm}^{2} \mathrm{~mol}^{-1} \ldots \text {..iii) } \\
& \text { To find: } \lambda_{\mathrm{m}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)}^{\varrho}=\lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{0}+\lambda_{\mathrm{H}^{+}}^{\circ}
\end{align*}
$$

The above equation can be obtained by
Eq. (iii) $+\frac{\text { Eq.(i) }}{2}-\frac{\text { Eq. (ii) }}{2}$

$$
\begin{aligned}
\therefore \lambda_{\mathrm{m}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)}^{\circ} & =\lambda_{\left.\mathrm{m}_{(\mathrm{CH}}^{3} \mathrm{COOK}\right)}^{\circ}+\frac{\lambda_{\mathrm{m}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)}^{o}}{2} \\
& =\left(z+\frac{x}{2}-\frac{y}{2}\right) \mathrm{Scm}^{2} \mathrm{~mol}^{-1} \\
& =\left(\frac{x-y}{2}+z\right) \mathrm{Scm}^{2} \mathrm{~mol}^{-1}
\end{aligned}
$$

11 The molar conductivity of a 0.5 $\mathrm{mol} / \mathrm{dm}^{3}$ solution of AgNO_{3} with electrolytic conductivity of $5.76 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$ at 298 K is
[CBSE AIPMT 2016, Phase II]
(a) $2.88 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol}$
(b) $11.52 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol}$
(c) $0.086 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol}$
(d) $28.8 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol}$

Ans. (b)
Key Idea The relation between molar conductivity (λ_{m}) and electrolytic conductivity (κ) is given as

$$
\lambda_{m}=\frac{\kappa \times 1000}{M}
$$

where, M is molarity of solution. Given, concentration of solution,

$$
M=0.5 \mathrm{~mol} / \mathrm{dm}^{3}
$$

Electrolytic conductivity,

$$
\kappa=5.76 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}
$$

Temperature, $T=298 \mathrm{~K}$
\therefore Molar conductivity,

$$
\begin{aligned}
\lambda_{\mathrm{m}} & =\frac{\kappa \times 1000}{M} \\
& =\frac{5.76 \times 10^{-3} \times 1000}{0.5} \\
& =11.52 \mathrm{~S} \mathrm{~cm}^{2} / \mathrm{mol}
\end{aligned}
$$

12 During the electrolysis of molten sodium chloride, the time required to produce 0.10 mol of chlorine gas using a current of 3 amperes is
[CBSE AIPMT 2016, Phase II]
(a) 55 minutes
(b) 110 minutes
(c) 220 minutes
(d) 330 minutes

Ans. (b)
Key Idea This problem is based on Faraday's first law of electrolysis which states that when an electric current is passed through an electrolytic solution, the amount of substance (w), deposited at the electrode, is proportional to the electric charge (q) passed through the electrolytic solution.
The formula used in the problem is

$$
\begin{equation*}
w=\frac{E i t}{96500} \tag{i}
\end{equation*}
$$

where, $E=$ gram-equivalent mass of Cl^{-}

$$
i=\text { current, } t=\text { time, it = q }
$$

Given, $w=0.10 \mathrm{~mol}=(0.10 \times 71) \mathrm{g}$,

$$
i=3 \mathrm{~A}, E=35.5
$$

The following reactions occured, At cathode:

$$
2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{+2 \mathrm{e}^{-}} \mathrm{H}_{2}+2 \mathrm{OH}^{-}
$$

At anode :

$$
\underset{35.5 \mathrm{~g}}{2 \mathrm{Cl}^{-}} \xrightarrow{-2 \mathrm{e}^{-}} \underset{71 \mathrm{~g}}{\mathrm{Cl}_{2}}
$$

Putting all values in expression (i) we get

$$
(0.10 \times 71)=\frac{35.5}{96500} \times 3 \times t
$$

$$
\begin{aligned}
\text { or } t & =6433 \mathrm{~s} \\
\text { or } t & =107.22 \mathrm{~min} \\
& \simeq 110 \mathrm{~min}
\end{aligned}
$$

$$
\left[1 \mathrm{~s}=\frac{1}{60} \mathrm{~min}\right]
$$

13 The number of electrons delivered at the cathode during electrolysis by a current of 1 ampere in 60 seconds is (charge on electron $=$ $1.60 \times 10^{-19} \mathrm{C}$)
[CBSE AIPMT 2016, Phase II]
(a) 6×10^{23}
(b) 6×10^{20}
(c) 3.75×10^{20}
(d) 7.48×10^{23}

Ans. (c)
From Faraday's first law of electrolysis,

$$
\begin{equation*}
\frac{w}{E}=\frac{i t}{96500} \tag{i}
\end{equation*}
$$

Given, $i=1 A_{;} t=60 \mathrm{~s}$
Putting these values in Eq. (i), we get

$$
\text { or } \begin{aligned}
\frac{W}{E} & =\frac{1 \times 60}{96500} \\
E & =\frac{6}{9650} \\
& =\text { Number of mole of electrons }
\end{aligned}
$$

\therefore Number of electrons

$$
\begin{aligned}
& =\frac{6}{9650} \times 6.022 \times 10^{23} \\
& =3.75 \times 10^{20}
\end{aligned}
$$

14 Aqueous solution of which of the following compounds is the best conductor of electric current?
[CBSE AIPMT 2015]
(a) Acetic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
(b) Hydrochloric acid, HCl
(c) Ammonia, NH_{3}
(d) Fructose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Ans. (b)
Since, HCl is strong acid and dissociates completely. Hence, it conducts electricity best in its aqueous solution.
$\overline{15}$ When 0.1 mole of MnO_{4}^{2-} is oxidised, the quantity of electricity required to completely oxidise MnO_{4}^{2-} to MnO_{4}^{-}is
[CBSE AIPMT 2014]
(a) 96500 C
(b) $2 \times 96500 \mathrm{C}$
(c) 9650 C
(d) 96.50 C

Ans. (c)

$$
\underset{(+6)}{\mathrm{MnO}_{4}^{2-}} \stackrel{\left[1 \text { mole }^{-}=1 \mathrm{~F}\right]}{\rightleftharpoons} \mathrm{MnO}_{(+7)}^{\rightleftharpoons}
$$

As per the equation, for 1 mole of $\mathrm{MnO}_{4}^{2-}, 1$ F of electricity is required. Thus, for 0.1 mole of $\mathrm{MnO}_{4}^{2-}, 0.1 \mathrm{~F}$ of electricity is required.
Since, $1 F=96500 \mathrm{C}$

$$
\therefore \quad 0.1 \mathrm{~F}=0.1 \times 96500 \mathrm{C}=9650 \mathrm{C}
$$

Hence, 9650 C of electricity is required to completely oxidise MnO_{4}^{2-} to MnO_{4}^{-}.

16 The weight of silver (at. wt. $=108$) displaced by a quantity of electricity which displaces 5600 mL of O_{2} at STP will be
[CBSE AIPMT 2014]
(a) 5.4 g
(b) 10.8 g
(c) 54.0 g
(d) 108.0 g

Ans. (d)
Since, 22400 mL volume is occupied by 1 mole of O_{2} at STP.
Thus, $5600 \mathrm{mLO}_{2}$ means

$$
\begin{aligned}
& =\frac{5600}{22400} \mathrm{~mol} \mathrm{O}_{2}=\frac{1}{4} \mathrm{~mol} \mathrm{O}_{2} \\
\therefore \quad & \text { Weight of } \mathrm{O}_{2}=\frac{1}{4} \times 32=8 \mathrm{~g}
\end{aligned}
$$

According to problem,
Equivalents of $\mathrm{Ag}=$ Equivalents of O_{2}

$$
\begin{aligned}
= & \frac{\text { Weight of } \mathrm{Ag}}{\text { Equivalent weight of } \mathrm{Ag}} \\
= & \frac{W_{\mathrm{O}_{2}}}{\text { Equivalent weight of } \mathrm{O}_{2}} \\
& \frac{\mathrm{~W}_{\mathrm{Ag}}}{\mathrm{M}_{\mathrm{Ag}}}=\frac{W_{\mathrm{O}_{2}}}{M_{\mathrm{O}_{2}}} \\
\hline & \frac{W_{\mathrm{Ag}}}{108} \times 1=\frac{8}{32} \times 4 \\
\therefore \quad & {\left[\because 2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\longrightarrow} \mathrm{O}_{1}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}\right] } \\
\Rightarrow \quad & W_{\mathrm{Ag}}=108 \mathrm{~g}
\end{aligned}
$$

17 At $25^{\circ} \mathrm{C}$ molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is $9.54 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and at infinite dilution its molar conductance is
$238 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. The degree of ionisation of ammonium hydroxide at the same concentration and temperature is
[NEET 2013]
(a) 2.080%
(b) 20.800%
(c) 4.008%
(d) 40.800%

Ans. (c)
Given, molar conductance at 0.1 M concentration,

$$
\lambda_{c}=9.54 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}
$$

Molar conductance at infinite dilution,

$$
\lambda_{c}^{\infty}=238 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}
$$

We know that, degree of ionisation,

$$
\begin{aligned}
\alpha & =\frac{\lambda_{c}}{\lambda_{c}^{\infty}} \times 100 \\
& =\frac{9.54}{238} \times 100=4.008 \%
\end{aligned}
$$

18 Limiting molar conductivity of $\mathrm{NH}_{4} \mathrm{OH}$
(i.e. $\AA_{\mathrm{m}}\left(\mathrm{NH}_{4} \mathrm{OH}\right)$) is equal to
[CBSE AIPMT 2012]
(a) $\Lambda_{m\left(\mathrm{NH}_{4} \mathrm{Cl}\right)}^{\circ}+\Lambda_{\mathrm{m}(\mathrm{NaCl})}^{\circ}-\Lambda_{\mathrm{m}(\mathrm{NaOH})}^{\circ}$
(b) $\left.\Lambda_{m}^{\circ}(\mathrm{NaOH})+\Lambda_{m(\mathrm{NaCl})}^{\circ}-\Lambda_{m}^{\circ} \mathrm{NH}_{4} \mathrm{Cl}\right)$
(c) $\Lambda_{m\left(\mathrm{NH}_{4} \mathrm{OH}\right)}^{\circ}+\Lambda_{\mathrm{m}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)}^{\circ}-\Lambda_{\mathrm{m}(\mathrm{HCl})}^{\circ}$
(d) $\left.\Lambda_{\mathrm{m}(\mathrm{NH}}^{4} \mathrm{Cl}\right)+\Lambda_{\mathrm{m}(\mathrm{NaOH})}^{\circ}-\Lambda_{\mathrm{m}(\mathrm{NaCl})}^{\circ}$

Ans. (d)
According to Kohlrausch's law, limiting molar conductivity of $\mathrm{NH}_{4} \mathrm{OH}$

$$
\begin{aligned}
\Lambda_{\mathrm{m}\left(\mathrm{NH}_{4} \mathrm{OH}\right)}^{\circ}=\Lambda_{\mathrm{m}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)}^{\circ}+\Lambda_{\mathrm{m}(\mathrm{NaOH})}^{\circ} & \\
& -\Lambda_{\mathrm{m}(\mathrm{NaCl})}^{\circ}
\end{aligned}
$$

19 An increase in equivalent conductance of a strong electrolyte with dilution is mainly due to
[CBSE AIPMT 2010]
(a) increase in ionic mobility of ions
(b) 100% ionisation of electrolyte at normal dilution
(c) increase in both, i.e. number of ions and ionic mobility of ions
(d) increase in number of ions

Ans. (a)
Key Idea $\lambda_{\text {eq }}=\kappa \times V=\frac{k \times 1000}{\text { Normality }}$.
On dilution, the number of current carrying particles per cm^{3} decreases but the volume of solution increases. Consequently, the ionic mobility increases, which in turn increases the equivalent conductance of strong electrolyte.

20 The equivalent conductance of $\frac{M}{32}$ solution of a weak monobasic acid is $8.0 \mathrm{mho} \mathrm{cm}^{2}$ and at infinite dilution is $400 \mathrm{mho} \mathrm{cm}{ }^{2}$. The dissociation constant of this acid is
[CBSE AIPMT 2009]
(a) 1.25×10^{-5}
(b) 1.25×10^{-6}
(c) 6.25×10^{-4}
(d) 1.25×10^{-4}

Ans. (a)
Degree of dissociation, $\alpha=\frac{\Lambda^{\text {c }}}{\Lambda^{\infty}}$
where, Λ^{c} and Λ^{∞} are equivalent conductances at a given concentration and at infinite dilution respectively.

$$
\Rightarrow \quad \alpha=\frac{8.0}{400}=2 \times 10^{-2}
$$

From Ostwald's dilution law (for weak monobasic acid),

$$
\begin{aligned}
K_{c} & =\frac{C \alpha^{2}}{(1-\alpha)} \\
& =C \alpha^{2} \quad(\because 1 \ggg \alpha) \\
& =\frac{1}{32}\left(2 \times 10^{-2}\right)^{2} \\
& =1.25 \times 10^{-5}
\end{aligned}
$$

$21 \mathrm{Al}_{2} \mathrm{O}_{3}$ is reduced by electrolysis at low potentials and high currents. If $4.0 \times 10^{4} \mathrm{~A}$ of current is passed through molten $\mathrm{Al}_{2} \mathrm{O}_{3}$ for 6 h , what mass of aluminium is produced? (Assume 100\% current efficiency, atomic mass of $A I=27 \mathrm{~g} \mathrm{~mol}^{-1}$)
[CBSE AIPMT 2009]
(a) $9.0 \times 10^{3} \mathrm{~g}$
(b) $8.1 \times 10^{4} \mathrm{~g}$
(c) $2.4 \times 10^{5} \mathrm{~g}$
(d) $1.3 \times 10^{4} \mathrm{~g}$

Ans. (b)
$\mathrm{Al}_{2} \mathrm{O}_{3}$ ionises as,

$$
\mathrm{Al}_{2} \mathrm{O}_{3} \rightleftharpoons \begin{gathered}
\mathrm{Al}^{3+}+\mathrm{AlO}_{3}^{3-} \\
\text { Cathode Anode }
\end{gathered}
$$

At cathode

$$
\begin{array}{cc}
\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \\
3 \mathrm{~F}
\end{array} \longrightarrow \begin{gathered}
\mathrm{Al} \\
27 \mathrm{~g}
\end{gathered}
$$

\because Mass of aluminium deposited by 3 F of electricity $=27 \mathrm{~g}$
\therefore Mass of aluminium deposited by

$$
\begin{aligned}
& 4.0 \times 10^{4} \times 6 \times 3600 \text { C of electricity } \\
= & \frac{27 \times 4.0 \times 10^{4} \times 6 \times 3600}{3 \mathrm{~F}} \mathrm{~g} \\
= & \frac{27 \times 4.0 \times 10^{4} \times 6 \times 3600}{3 \times 96500} \mathrm{~g} \\
= & 8.1 \times 10^{4} \mathrm{~g}
\end{aligned}
$$

22 Kohlrausch's law states that at
[CBSE AIPMT 2008]
(a) infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte
(b) infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte depending on the nature of the other ion of the electrolyte
(c) infinite dilution, each ion makes definite contribution to conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte
(d) infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte, whatever be the nature of the other ion of the electrolyte
Ans. (d)
Kohlrausch's law states that "the equivalent conductance of an electrolyte at infinite dilution is equal to the sum of the equivalent conductances of the component ions."

$$
\lambda_{\infty}=\lambda_{a}+\lambda_{c}
$$

where, $\lambda_{a}=$ equivalent conductance of the anion
$\lambda_{c}=$ equivalent conductance of the cation
Each ion has the same constant ionic conductance at a fixed temperature, no matter of which electrolyte it forms a part.
234.5 g of aluminium (atomic mass 27 u) is deposited at cathode from Al^{3+} solution by a certain quantity of electric charge. The volume of hydrogen produced at STP from H^{+} ions in solution by the same quantity of electric charge will be
[CBSE AIPMT 2005]
(a) 44.8 L
(b) 22.4 L
(c) 11.2 L
(d) 5.6 L

Ans. (d)
From second law of Faraday

$$
\begin{aligned}
\frac{m_{\mathrm{Al}}}{m_{\mathrm{H}}} & =\frac{E_{\mathrm{Al}}}{E_{\mathrm{H}}} \\
\frac{4.5}{m_{\mathrm{H}}} & =\frac{27 / 3}{1} \\
\text { or } \quad m_{H} & =0.5 \mathrm{~g}
\end{aligned}
$$

\because Volume of $2 \mathrm{gH}_{2}$ at STP $=22.4 \mathrm{~L}$
\therefore Volume of $0.5 \mathrm{gH}_{2}$ at STP

$$
=\frac{22.4 \times 0.5}{2} L=5.6 L
$$

24 In electrolysis of NaCl when Pt electrode is taken then H_{2} is liberated at cathode while with Hg cathode it forms sodium amalgam because
[CBSE AIPMT 2002]
(a) Hg is more inert than Pt
(b) more voltage is required to reduce H^{+}at Hg than at Pt
(c) Na is dissolved in Hg while it does not dissolved in Pt
(d) concentration of H^{+}ions is larger when Pt electrode is taken
Ans. (b)
Sodium chloride in water dissociates as

$$
\begin{aligned}
& \mathrm{NaCl} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{Cl}^{-} \\
& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}
\end{aligned}
$$

When electric current is passed through this solution using platinum electrodes, Na^{+}and H^{+}move towards cathode whereas Cl^{-}and OH^{-}ions move towards anode.

At cathode

$$
\begin{aligned}
\mathrm{H}^{+}+\mathrm{e}^{-} & \rightarrow \mathrm{H} \\
\mathrm{H}+\mathrm{H} & \rightarrow \mathrm{H}_{2}
\end{aligned}
$$

At anode

$$
\begin{aligned}
\mathrm{Cl}^{-} & \rightarrow \mathrm{Cl}+\mathrm{e}^{-} \\
\mathrm{Cl}+\mathrm{Cl} & \rightarrow \mathrm{Cl}_{2}
\end{aligned}
$$

If mercury is used as cathode, H^{+}ions are not discharged at mercury cathode because mercury has a high hydrogen over voltage. Na^{+}ions are discharged at cathode in preference of H^{+}ions yielding sodium, which dissolves in mercury to form sodium amalgam.

25 Cell reaction is spontaneous when
[CBSE AIPMT 2000]
(a) $E_{\text {red }}^{\circ}$ is negative
(b) $E_{\text {red }}^{\circ}$ is positive
(c) ΔG° is negative
(d) ΔG° is positive

Ans. (c)
When the value of ΔG° is negative, the cell reaction is spontaneous.

$$
\Delta G^{\circ}=-n F E^{\circ}
$$

where, $n=$ number of electrons take part
$F=$ Faraday constant
$E^{\circ}=E M F$ of the cell

Thus, for a spontaneous reaction, the EMF of the cell must be positive.

26 The equivalent conductances of Ba^{2+} and Cl^{-}are 127 and $76 \Omega^{-1} \mathrm{~cm}^{-1} \mathrm{eq}^{-1}$ respectively at infinite dilution. The equivalent conductance of BaCl_{2} at infinite dilution will be [CBSE AIPMT 2000]
(a) 139.52
(b) 203
(c) 279
(d) 101.5

Ans. (a)
The equivalent conductance of BaCl_{2} at infinite dilution

$$
\begin{aligned}
\lambda_{\infty} \text { of } \mathrm{BaCl}_{2} & =\frac{1}{2} \lambda_{\infty} \text { of } \mathrm{Ba}^{2+}+\lambda_{\infty} \text { of } \mathrm{Cl}^{-} \\
& =\frac{127}{2}+76=139.5
\end{aligned}
$$

27 The specific conductance of a 0.1 N KCl solution at $23^{\circ} \mathrm{C}$ is 0.012 $\Omega^{-1} \mathrm{~cm}^{-1}$. The resistance of cell containing the solution at the same temperature was found to be 55Ω. The cell constant will be
[CBSE AIPMT 1999]
(a) $0.142 \mathrm{~cm}^{-1}$
(b) $0.66 \mathrm{~cm}^{-1}$
(c) $0.918 \mathrm{~cm}^{-1}$
(d) $1.12 \mathrm{~cm}^{-1}$

Ans. (b)
Specific conductivity,

$$
k=0.012 \Omega^{-1} \mathrm{~cm}^{-1}
$$

Resistance $=55 \Omega$

$$
\begin{aligned}
& k=\frac{1}{\text { resistance }} \times \frac{1}{a}\left[G=\frac{1}{R}\right] \\
& \frac{1}{a}=\text { cell constant } \\
& \frac{1}{a}=55 \times 0.012=0.66 \mathrm{~cm}^{-1}
\end{aligned}
$$

28 Equivalent conductance of NaCl , HCl and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}$ at infinete dilution are $126.45,426.16$ and $91 \Omega^{-1} \mathrm{~cm}^{2}$, respectively. The equivalent conductance of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ is [CBSE AIPMT 1997]
(a) $201.28 \Omega^{-1} \mathrm{~cm}^{2}$
(b) $390.71 \Omega^{-1} \mathrm{~cm}^{2}$
(c) $698.28 \Omega^{-1} \mathrm{~cm}^{2}$
(d) $540.48 \Omega^{-1} \mathrm{~cm}^{2}$

Ans. (b)
By Kohlrausch's law

$$
\begin{gather*}
\lambda_{\infty} \text { for } \mathrm{NaCl}=\lambda_{\mathrm{Na}^{+}}+\lambda_{\mathrm{Cl}^{-}} \tag{i}\\
\lambda_{\infty} \text { for } \mathrm{HCl}=\lambda_{\mathrm{H}^{+}}+\lambda_{\mathrm{Cl}^{-}} \tag{ii}\\
\lambda_{\infty} \text { for } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}=\lambda_{\mathrm{Na}^{+}}+\lambda_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}} \tag{iii}
\end{gather*}
$$

So, λ_{∞} for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ can be obtained by adding Eqs. (ii) and (iii) and then subtracting Eq. (i)

$$
\begin{aligned}
= & \lambda_{\infty} \text { of } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}+\lambda_{\infty} \text { of } \mathrm{HCl} \\
& \quad-\lambda_{\infty} \text { for } \mathrm{NaCl} \\
= & (91+426.16-126.45) \Omega^{-1} \mathrm{~cm}^{2} \\
= & 390.71 \Omega^{-1} \mathrm{~cm}^{2}
\end{aligned}
$$

29 A 5A current is passed through a solution of zinc sulphate for 40 min. The amount of zinc deposited at the cathode is
[CBSE AIPMT 1996]
(a) 40.65 g
(b) 0.4065 g
(c) 4.065 g
(d) 65.04 g

Ans. (c)
Current, $l=5 \mathrm{~A}$
time, $t=40 \mathrm{~min}=40 \times 60=2400 \mathrm{~s}$
Amount of electricity passed

$$
\begin{aligned}
& O=I t \\
& 0=5 \times 2400 \\
& O=12000 \mathrm{C} . \\
& \mathrm{Zn}^{2+}+2 e^{-} \longrightarrow \mathrm{Zn} \\
& \mathrm{n}=2 \mathrm{e}^{-}
\end{aligned}
$$

From Faraday first law

$$
\begin{aligned}
& W=Z I t \\
& Z=\text { equivalent mass }
\end{aligned}
$$

$$
=\frac{\text { Mass }}{e^{-} \times F}=\frac{65.39}{2 \times 96500} \mathrm{~g} \text { of zinc }
$$

therefore, 12000 C charge will deposite

$$
\begin{aligned}
& =\frac{65.39 \times 12000}{2 \times 96500} \\
& =4.065 \mathrm{~g} \text { of zinc }
\end{aligned}
$$

TOPIC 3

Electronium Series, Electrode Potential and Emf

30 Identify the reaction from following having top position in EMF series (Standard reduction potential) according to their electrode potential at 298 K .
[NEET (Oct.) 2020]
$(\mathrm{a}) \mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mg}(\mathrm{s})$
(b) $\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}(\mathrm{s})$
(c) $\mathrm{Au}^{3+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Au}(s)$
(d) $\mathrm{K}^{+}+1 \mathrm{e}^{-} \longrightarrow \mathrm{K}(\mathrm{s})$

Ans. (c)
Let us consider the segment of EMF series (standard reduction potential) of the given reduction half-call reactions:

Reduction half reaction	E/V at 298K
(a) $\mathrm{Mg}^{2+}+2 e \longrightarrow \mathrm{Mg}$	-2.36
(b) $\mathrm{Fe}^{2+}+2 e \longrightarrow \mathrm{Fe}$	-0.44
(c) $\mathrm{Au}^{3+}+3 e \longrightarrow \mathrm{Au}$	+1.40
(d) $\mathrm{K}^{+}+e \longrightarrow \mathrm{~K}$	-2.93
Hence, option (c) is correct.	

31 The standard electrode potential (E^{-}) values of
$\left(\mathrm{Al}^{3+} / \mathrm{Al}, \mathrm{Ag}^{+} / \mathrm{Ag}, \mathrm{K}^{+} / \mathrm{K}\right.$ and $\mathrm{Cr}^{3+} / \mathrm{Cr}$ are $-1.66 \mathrm{~V}, 0.80 \mathrm{~V}, 2.93 \mathrm{~V}$ and -0.74 V , respectively. The correct decreasing order of reducing power of the metal is
[NEET (Odisha) 2019]
(a) $\mathrm{Ag}>\mathrm{Cr}>\mathrm{Al}>\mathrm{K}$
(b) $\mathrm{K}>\mathrm{Al}>\mathrm{Cr}>\mathrm{Ag}$
(c) $\mathrm{K}>\mathrm{Al}>\mathrm{Ag}>\mathrm{Cr}$
(d) $\mathrm{Al}>\mathrm{K}>\mathrm{Ag}>\mathrm{Cr}$

Ans. (b)
More negative the value of standard reduction potential, higher is the reduction power.
i.e. Reducing power

$$
\propto \frac{1}{\text { standard reduction potential }}
$$

Thus, the correct decreasing order of reducing power of the metal is

$$
\begin{array}{ll}
\mathrm{K} \quad>\quad \mathrm{Al} \quad> \\
\left(E_{\mathrm{K}^{\circ} / \mathrm{K}}^{0}=-2.93 \mathrm{~V}\right) & \left(\mathrm{E}_{\mathrm{Al}^{3+} / \mathrm{Al}}^{0}=-1.66 \mathrm{~V}\right) \\
\mathrm{Cr} & >\mathrm{Ag} \\
\left(E_{\mathrm{Cr}^{3+} / \mathrm{Cr}}^{0}=-0.74 \mathrm{~V}\right) & \left(E_{\mathrm{Ag}^{+}}^{0} / \mathrm{Ag}=0.80 \mathrm{~V}\right)
\end{array}
$$

32 For the cell reaction,

$$
\begin{aligned}
2 \mathrm{Fe}^{3+}(a q)+2 \mathrm{I}^{-}(a q) \longrightarrow & 2 \mathrm{Fe}^{2+}(a q) \\
& +I_{2}(a q)
\end{aligned}
$$

$E_{\text {cell }}^{\ominus}=0.24 \mathrm{~V}$ at 298 K . The standard Gibbs energy ($\Delta_{\mathrm{r}} \mathrm{G}^{\ominus}$) of the cell reaction is
[Given that Faraday constant
$F=96500 \mathrm{C} \mathrm{mol}^{-1}$]
[NEET (National) 2019]
(a) $-23.16 \mathrm{k} \mathrm{mol}^{-1}$
(b) $46.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $23.16 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $-46.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. (d)
The relation between $E_{\text {cell }}^{0}$ and $\Delta_{r} G^{0}$ is as follows:

$$
\Delta_{r} G^{o}=-n F E_{\text {cell }}^{\circ}
$$

For the cell reaction,

$$
\begin{aligned}
& 2 \mathrm{Fe}^{3+}(a q)+2 \mathrm{I}^{-}(a q) \rightarrow 2 \mathrm{Fe}^{2+}(a q)+I_{2}(a q) \\
& \quad n=2
\end{aligned}
$$

Given, $F=96500 \mathrm{C} \mathrm{mol}^{-1}, E_{\text {cell }}^{\circ}=0.24 \mathrm{~V}$ Now, we know that $\Delta_{r} G^{\circ}=-n F E_{\text {cell }}^{\circ}$ On substituting the given values in above equation we get

$$
\begin{aligned}
\Delta_{\mathrm{r}} G^{\varrho} & =-2 \mathrm{~mol} \times 96500 \mathrm{C} \mathrm{~mol}^{-1} \\
& \times-46320 \mathrm{~J} \mathrm{~mol}^{-1} \quad \times 0.24 \mathrm{~J} \mathrm{~mol}^{-1} \\
& =-46.32 \mathrm{KJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Hence, option (d) is correct.

33 In the electrochemical cell $\mathrm{Znl\mid} \mathrm{ZnSO}_{4}(0.01 \mathrm{M})| | \mathrm{CuSO}_{4}(1.0 \mathrm{M})$ Cu , the emf of this Daniel cell is E_{1}. When the concentration ZnSO_{4} is changed to 1.0 M and that of CuSO_{4} changed to 0.01 M , the emf changes to E_{2}. From the followings, which one is the relationship between E_{1} and E_{2} ? (Given, $\frac{R T}{F}=0.059$)
[NEET 2017, 2003]
(a) $E_{1}=E_{2}$
(b) $E_{1}<E_{2}$
(c) $E_{1}>E_{2}$
(d) $E_{2}=0 \neq E_{1}$

Ans. (c)
Thinking process Calculate the value of $E_{\text {cell }}$ i.e. E_{1} and E_{2} by substituting the respective given values in the Nernst equation,

$$
E_{\text {cell }}=E^{\circ}-\frac{0.059}{n} \log \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}
$$

Compare the calculated values of E_{1} and E_{2} and find the correct relation.
For the electrochemical cells,

$$
\mathrm{Zn}_{\mathrm{ZnSO}}^{4} \text { (0.01M)\|CuSO} 4(1 \mathrm{M}) \mid \mathrm{Cu}
$$

Cell reaction :

$$
\begin{gathered}
\mathrm{Zn}+\mathrm{Cu}^{2+} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{Cu} ; \mathrm{n}=2 \\
E_{1}=E^{\circ}-\frac{0.059}{2} \log \frac{\mathrm{Zn}^{2+}}{\mathrm{Cu}^{2+}} \\
=E^{\circ}-\frac{0.059}{2} \log \frac{0.01}{1} \\
E_{1}=E^{\circ}-\frac{0.059}{2} \log \frac{1}{100}=\left(E^{\circ}+0.059\right)
\end{gathered}
$$

For cell, $\mathrm{Zn}\left|\mathrm{ZnSO}_{4}(1 \mathrm{M})\right|\left|\mathrm{CuSO}_{4}(0.01 \mathrm{M})\right| \mathrm{Cu}$

$$
\begin{aligned}
E_{2} & =E^{\circ}-\frac{0.059}{2} \log \frac{1}{0.01} \\
E_{2} & =E^{\circ}-\frac{0.059}{2} \log 100 \\
\therefore \quad & =\left(E^{\circ}-0.059\right) \Rightarrow E_{1}>E_{2}
\end{aligned}
$$

34 The pressure of H_{2} required to make the potential of H_{2}-electrode zero in pure water at 298 K is
[CBSE AIPMT 2016, Phase I]
(a) $10^{-12} \mathrm{~atm}$
(b) $10^{-10} \mathrm{~atm}$
(c) $10^{-4} \mathrm{~atm}$
(d) $10^{-14} \mathrm{~atm}$

Ans. (d)
From the question, we have an equation

$$
2 \mathrm{H}^{+}+2 e^{-} \longrightarrow \mathrm{H}_{2}(\mathrm{~g})
$$

According to Nernst equation,

$$
\begin{aligned}
& E= E^{\circ}-\frac{0.0591}{2} \log \frac{P_{\mathrm{H}_{2}}}{\left[\mathrm{H}^{+}\right]^{2}} \\
&=0-\frac{0.0591}{2} \log \frac{P_{\mathrm{H}_{2}}}{\left(10^{-7}\right)^{2}} \\
& {\left[\because\left[\mathrm{H}^{+}\right]=10^{-7}\right] }
\end{aligned}
$$

\therefore For potential of H_{2} electrode to be zero, $\mathrm{H}_{\mathrm{H}_{2}}$ should be equal to $\left[\mathrm{H}^{+}\right]^{2}$, i.e. $10^{-14} \mathrm{~atm}$.

$$
\therefore \quad \log \frac{10^{-14}}{\left(10^{-7}\right)^{2}}=0
$$

$\overline{35}$ If the $E_{\text {cell }}^{\circ}$ for a given reaction has a negative value, which of the following gives correct relationships for the values of ΔG° and $K_{\text {eq }}$?
[CBSE AIPMT 2016, Phase II, 2011]
(a) $\Delta G^{\circ}>0 ; K_{\text {eq }}<1$ (b) $\Delta G^{\circ}>0 ; K_{\text {eq }}>1$
(c) $\Delta G^{\circ}<0 ; K_{\text {eq }}>1$ (d) $\Delta G^{\circ}<0 ; K_{\text {eq }}<1$

Ans. (a)
Given, $\quad E_{\text {cell }}^{\circ}=-\mathrm{ve}$
The relation between ΔG° and $E_{\text {cell }}^{\circ}$ is given as

$$
\begin{equation*}
\Delta G^{\circ}=-n F \quad E_{\text {cell }}^{\circ} \tag{i}
\end{equation*}
$$

If $E_{\text {cell }}^{\circ}$ is negative, so ΔG° comes out to be positive. Again, relation between ΔG° and $K_{\text {eq }}$ is given as

$$
\begin{equation*}
\Delta G^{\circ}=-2.303 n R T \log K_{e q} \tag{ii}
\end{equation*}
$$

From Eq. (i) we get that ΔG° is positive. Now, if ΔG° is positive then $K_{\text {eq }}$ comes out to be negative from eq (ii).
i.e. $\Delta G^{\circ}>1$ and $K_{\text {eq }}<1$

Short trick As $E_{\text {cell }}^{\circ}$ is negative so reaction is non-spontaneous or you can say reaction is moving in backward direction. For non-spontaneous reaction, ΔG° is always positive and $K_{\text {eq }}$ is always less than 1.

36 A hydrogen gas electrode is made by dipping platinum wire in a solution of HCl of $\mathrm{pH}=10$ and by passing hydrogen gas around the platinum wire at 1 atm pressure. The oxidation potential of electrode would be [NEET 2013]
(a) 0.059 V
(b) 0.59 V
(c) 0.118 V
(d) 1.18 V

Ans. (b)
For hydrogen electrode, oxidation half reaction is

$$
\begin{aligned}
& \underset{(1 \mathrm{~atm})}{\mathrm{H}_{2}} \longrightarrow \underset{(\mathrm{AtpH} 10)}{2 \mathrm{H}^{+}}+2 \mathrm{e}^{-} \\
& \text {If } \\
& \mathrm{pH}=10 \\
& \mathrm{H}^{+}=1 \times 10^{-\mathrm{pH}}=1 \times 10^{-10}
\end{aligned}
$$

From Nernst equation,

$$
E_{\text {cell }}=E^{\circ}{ }_{\text {cell }}-\frac{0.0591}{2} \log \frac{\left[\mathrm{H}^{+}\right]^{2}}{p_{\mathrm{H}_{2}}}
$$

For hydrogen electrode, $E^{\circ}{ }_{\text {cell }}=0$

$$
\begin{aligned}
E_{\text {cell }} & =-\frac{0.0591}{2} \log \frac{\left(10^{-10}\right)^{2}}{1} \\
& =+\frac{0.0591 \times 2}{2} \log \frac{1}{10^{-10}} \\
& =0.0591 \log 10^{10} \\
& =0.0591 \times 10 \\
& =0.591 \mathrm{~V}
\end{aligned}
$$

37 Standard electrode potential of three metals X, Y and Z are -1.2 V , + 0.5 V and -3.0 V respectively. The reducing power of these metals will be
[CBSE AIPMT 2011]
(a) $Y>X>Z$
(b) $Z>X>Y$
(c) $X>Y>Z$
(d) $Y>Z>X$

Ans. (b)

$$
\begin{aligned}
& E_{X}^{\circ}=-1.2 \mathrm{~V} \\
& E_{Y}^{\circ}=+0.5 \mathrm{~V} \\
& E_{Z}^{\circ}=-3.0 \mathrm{~V} \\
\therefore \quad & Z>X>Y
\end{aligned}
$$

$[\because$ higher the reduction potential, lesser the reducing power.]
$\overline{38}$ The electrode potentials for

$$
\mathrm{Cu}^{2+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}(a q)
$$

and $\mathrm{Cu}^{+}(a q)+e^{-} \longrightarrow \mathrm{Cu}(s)$ are +0.15 V and +0.50 V respectively. The value of $E_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\circ}$ will be
[CBSE AIPMT 2011]
(a) 0.325 V
(b) 0.650 V
(c) 0.150 V
(d) 0.500 V

Ans. (a)

$$
\begin{gathered}
\mathrm{Cu}^{2+}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}, \\
\mathrm{E}_{1}^{\circ}=0.15 \mathrm{~V}, \Delta G_{1}^{\circ}=-n_{1} E_{1}^{\circ} \mathrm{F} \\
\mathrm{Cu}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}, E_{2}^{\circ}=0.50 \mathrm{~V}, \\
\Delta G_{2}^{\circ}=-n_{2} E_{2}^{\circ} \mathrm{F} \\
\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}, E^{\circ}=?, \\
\Delta G^{\circ}=-n E^{\circ} \mathrm{F} \\
\\
\Delta G^{\circ}=\Delta G_{1}^{\circ}+\Delta G_{2}^{\circ} \\
-n E^{\circ} \mathrm{F}=-n_{1} E_{1}^{\circ} F-n_{2} E_{2}^{\circ} F \\
\text { or }-2 E^{\circ} \mathrm{F}=-1 \mathrm{~F} \times 0.15+(-1 \mathrm{~F} \times 0.50) \\
\text { or }-2 E^{\circ} \mathrm{F}=-0.15 \mathrm{~F}-0.50 \mathrm{~F} \\
\text { or }-2 F E^{\circ}=-\mathrm{F}(0.15+0.50) \\
\therefore \quad E^{\circ}=\frac{0.65}{2}=0.325 \mathrm{~V}
\end{gathered}
$$

39 Standard electrode potential for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ couple is +0.15 V and that for the $\mathrm{Cr}^{3+} / \mathrm{Cr}$ couple is -0.74 . These two couples in their standard state are connected to make a cell. The cell potential will be
[CBSE AIPMT 2011]
(a) +0.89 V
(b) +0.18 V
(c) +1.83 V
(d) +1.199 V

Ans. (a)

$$
\begin{aligned}
& E_{\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}}^{\circ}=+0.15 \mathrm{~V} \\
& E_{\mathrm{Cr}^{3+} / \mathrm{Cr}}^{\circ}=-0.74 \mathrm{~V} \\
& \begin{array}{c}
E_{\text {cell }}^{\circ}=E_{\text {cathode(RP) }}^{\circ}-E_{\text {anode(RP) }}^{\circ} \\
\quad=0.15-(-0.74) \\
\quad=+0.89 \mathrm{~V}
\end{array}
\end{aligned}
$$

40 For the reduction of silver ions with copper metal, the standard cell potential was found to be +0.46 V at $25^{\circ} \mathrm{C}$. The value of standard Gibbs energy, ΔG° will be ($F=96500 \mathrm{C} \mathrm{mol}^{-1}$)
[CBSE AIPMT 2010]
(a) -89.0 kJ
(b) -89.0 J
(c) -44.5 kJ
(d) -98.0 kJ

Ans. (a)
We know that, standard Gibbs energy,

$$
\Delta G^{\circ}=-n F E_{\mathrm{cell}}^{\circ}
$$

For the cell reaction,

$$
\begin{aligned}
& 2 \mathrm{Ag}^{+}+\mathrm{Cu} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{Ag} \\
& \begin{aligned}
\Delta E_{\text {cell }}^{\circ} & =+0.46 \mathrm{~V} \\
\Delta G^{\circ} & =-n F E_{\text {cell }}^{\circ} \\
& n=2 \\
\Delta G^{\circ} & =-2 \times 96500 \times 0.46 \\
& =-88780 \mathrm{~J} \\
= & -88.7 \mathrm{~kJ} \approx-89.0 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

41 Given,
(i) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}$, $E^{\circ}=0.337 \mathrm{~V}$
(ii) $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}$, $E^{\circ}=0.153 \mathrm{~V}$
Electrode potential, E° for the reaction,

$$
\mathrm{Cu}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}, \text { will be }
$$

[CBSE AIPMT 2009]
(a) 0.52 V
(b) 0.90 V
(c) 0.30 V
(d) 0.38 V

Ans. (a)

$$
\Delta G^{\circ}=-n F E^{\circ}
$$

For reaction,

$$
\begin{array}{r}
\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}, \quad \ldots \text { (i) } \tag{i}\\
\Delta G^{\circ}=-2 \times F \times 0.337
\end{array}
$$

$$
\text { For reaction, } \mathrm{Cu}^{+} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{e}^{-}, \quad . .(\text { (ii) }
$$

$$
\begin{aligned}
\Delta G^{\circ} & =-1 \times F \times(-0.153) \\
& =+0.153 \mathrm{~F}
\end{aligned}
$$

Adding Eqs. (i) and (ii), we get

$$
\begin{array}{ll}
\mathrm{Cu}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}, \Delta G^{\circ}=-0.521 F \\
\Delta G^{\circ}=-n F E^{\circ} \\
\therefore & -0.521 \mathrm{~F}=-n F E^{\circ} \\
\therefore & E^{\circ}=0.52 \mathrm{~V}
\end{array}
$$

42 Standard free energies of formation (in $\mathrm{kJ} / \mathrm{mol}$) at 298 K are -237.2, -394.4 and -8.2 for $\mathrm{H}_{2} \mathrm{O}(1)$, $\mathrm{CO}_{2}(\mathrm{~g})$ and pentane (g), respectively. The value of $E_{\text {cell }}^{\circ}$ for the pentane-oxygen fuel cell is
[CBSE AIPMT 2008]
(a) 1.968 V
(b) 2.0968 V
(c) 1.0968 V
(d) 0.0968 V

Ans. (c)
ΔG of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})=-237.2 \mathrm{~kJ} / \mathrm{mol}$
ΔG of $\mathrm{CO}_{2}(\mathrm{~g})=-394.4 \mathrm{~kJ} / \mathrm{mol}$
ΔG of pentane $(g)=-8.2 \mathrm{~kJ} / \mathrm{mol}$
In pentane-oxygen fuel cell following reaction takes place
$\mathrm{C}_{5} \mathrm{H}_{12}+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow 5 \mathrm{CO}_{2}+32 \mathrm{H}^{+}+32 \mathrm{e}^{-}$

$$
\frac{8 \mathrm{O}_{2}+32 \mathrm{H}^{+}+32 \mathrm{e}^{-} \longrightarrow 16 \mathrm{H}_{2} \mathrm{O}(I)}{\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \longrightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}), \mathrm{E}^{\circ}=?}
$$

$\Delta G_{\text {reaction }}=\Sigma \Delta G_{\text {product }}-\Sigma \Delta G_{\text {reactant }}$
$=5 \times \Delta G_{\left(\mathrm{CO}_{2}\right)}+6 \Delta G_{\left(\mathrm{H}_{2} \mathrm{O}\right)}-\left[\Delta G_{\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)}\right.$ $\left.+8 \times \Delta G_{\mathrm{O}_{2}}\right]$
$=5 \times(-394.4)+6 \times(-237.2)-(-8.2+0)$
$=-1972-1423.2+8.2$
$=-3387 \mathrm{~kJ} / \mathrm{mol}$
$=-3387 \times 10^{3} \mathrm{~J} / \mathrm{mol}$
$\Delta G=-n F E_{\text {cell }}^{\circ}$
$-3387 \times 10^{3}=-32 \times 96500 \times E_{\text {cell }}^{\circ}$

$$
E_{\text {cell }}^{\circ}=\frac{-3387 \times 10^{3}}{-32 \times 96500}=1.0968 \mathrm{~V}
$$

43 On the basis of the following E° values, the strongest oxidising agent is
[CBSE AIPMT 2008]
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{e}^{-}$;

$$
E^{\circ}=-0.35 \mathrm{~V}
$$

$$
\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}
$$

$$
E^{\circ}=-0.77 \mathrm{~V}
$$

(a) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(b) Fe^{2+}
(c) Fe^{3+}
(d) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

Ans. (c)
Substance which have higher reduction potential are stronger oxidising agent.
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \longrightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{e}^{-}$,

$$
\left.\begin{array}{l}
\mathrm{Fe}^{2+} \longrightarrow \mathrm{Ee}^{\circ}=-0.35 \mathrm{~V} \\
\because \quad E_{\text {oxi }}^{\circ}=-E_{\text {red }}^{\circ} \\
\therefore\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{e}^{-} \longrightarrow\left[\mathrm{Ee}(\mathrm{CN})_{6}\right]^{4-}, \\
E^{\circ}=0.35 \mathrm{~V}
\end{array}\right] \begin{aligned}
\\
\mathrm{Fe}^{3+}+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}, E^{\circ}=0.77 \mathrm{~V}
\end{aligned}
$$

Hence, Fe^{3+} has maximum tendency to reduced, so it is the strongest oxidising agent.

44 The equilibrium constant of the reaction,

$$
\mathrm{Cu}(\mathrm{~s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Cu}^{2+}(a q)
$$

$$
+2 \mathrm{Ag}(\mathrm{~s}), E^{\circ}=0.46 \mathrm{~V} \text { at } 298 \mathrm{~K}
$$

is
[CBSE AIPMT 2007]
(a) 2.0×10^{10}
(b) 4.0×10^{10}
(c) 4.0×10^{15}
(d) 2.4×10^{10}

Ans. (c)
$45 E_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\circ}=-0.441 \mathrm{~V}$ and $E_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\circ}=0.771 \mathrm{~V}$
the standard emf of the reaction $\mathrm{Fe}+2 \mathrm{Fe}^{3+} \longrightarrow 3 \mathrm{Fe}^{2+}$ will be
[CBSE AIPMT 2006]
(a) 0.111 V
(b) 0.330 V
(c) 1.653 V
(d) 1.212 V

Ans. (d)
Given that $E_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\circ}=-0.441 \mathrm{~V}$
So, $\quad \mathrm{Fe} \longrightarrow \mathrm{Fe}^{2+}+2 e^{-}$,

$$
\begin{equation*}
E^{\circ}=+0.441 \mathrm{~V} \tag{i}
\end{equation*}
$$

$$
\begin{gather*}
\text { and } \quad E_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\circ}=0.771 \mathrm{~V} \\
\text { So, } 2 \mathrm{Fe}^{3+}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Fe}^{2+}, \\
E^{\circ}=0.771 \mathrm{~V} \tag{ii}
\end{gather*}
$$

$$
\begin{aligned}
& \mathrm{Cu}(\mathrm{~s})+2 \mathrm{Ag}^{2+}(a q) \longrightarrow \mathrm{Cu}^{2+}(a q) \\
& +2 \mathrm{Ag}(\mathrm{~s}) \\
& E^{\circ}=0.46 \mathrm{~V} \text { at } 298 \mathrm{~K} \\
& R T \ln K=n F E^{\circ} \\
& \ln K=\frac{n F E^{\circ}}{R T} \\
& \ln K=\frac{2 \times 0.46}{0.0591} \\
& K=3.68 \times 10^{15} \simeq 4 \times 10^{15}
\end{aligned}
$$

Cell reaction

$$
\begin{array}{r}
\mathrm{Fe} \longrightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-}, \\
\mathrm{E}^{\circ}=0.441 \mathrm{~V} \\
\text { (ii) } 2 \mathrm{Fe}^{3+}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Fe}^{2+}, \mathrm{E}^{\circ}=+0.771 \mathrm{~V} \\
\overline{\mathrm{Fe}^{3}+2 \mathrm{Fe}^{3+} \longrightarrow 3 \mathrm{Fe}^{2+}, E_{\mathrm{cell}}^{\circ}=1.212 \mathrm{~V}}
\end{array}
$$

Alternative On the basis of cell reaction following half-cell reactions are written

At anode

$$
\mathrm{Fe} \longrightarrow \mathrm{Fe}^{2+}+2 e^{-} \quad \text { (oxidation) }
$$

At cathode

$$
2 \mathrm{Fe}^{3+}+2 e^{-} \longrightarrow 2 \mathrm{Fe}^{2+} \quad \text { (reduction) }
$$

$$
\text { So, } E_{\text {cell }}^{\circ}=E_{\text {cathode }}^{\circ}-E_{\text {anode }}^{\circ}
$$

$$
=(+0.771)-(-0.441)=+1.212 \mathrm{~V}
$$

46 A hypothetical electrochemical cell is shown below

$$
A \mid A^{+}(x M)\left\|B^{+}(y M)\right\| B
$$

The EMF measured is +0.20 V .
The cell reaction is
[CBSE AIPMT 2006]
(a) $A+B^{+} \rightarrow A^{+}+B$
(b) $A^{+}+B \rightarrow A+B^{+}$
(c) $A^{+}+e^{-} \rightarrow A, B^{+}+e^{-} \rightarrow B$
(d) the cell reaction cannot be predicted

Ans. (a)
Electrochemical cell,

$$
A\left|A^{+}(x M) \| B^{+}(y M)\right| B
$$

The EMF of cell is +0.20 V . So, cell reaction is possible. The half-cell reactions are given as follows
(i) At negative pole

$$
A \longrightarrow A^{+}+e^{-} \quad \text { (oxidation) }
$$

(ii) At positive pole

$$
\begin{aligned}
& \mathrm{B}^{+}+\mathrm{e}^{-} \longrightarrow B \\
& \text { (reduction) }
\end{aligned}
$$

Hence, cell reaction is

$$
A+\mathrm{B}^{+} \longrightarrow \mathrm{A}^{+}+\mathrm{B}, \quad E_{\text {cell }}^{\circ}=+0.20 \mathrm{~V}
$$

47 The standard EMF of a galvanic cell involving cell reaction with $n=2$ is found to be 0.295 V at $25^{\circ} \mathrm{C}$. The equilibrium constant of the reaction would be (Given $F=96500 \mathrm{C} \mathrm{mol}^{-1} \mathrm{I}^{-1}$ $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
[CBSE AIPMT 2004]
(a) 2.0×10^{11}
(b) 4.0×10^{12}
(c) 1.0×10^{2}
(d) 1.0×10^{10}

Ans. (d)
By Nernst equation,

$$
E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{2.303 R T}{n F} \log _{10} K
$$

At equilibrium, $E_{\text {cell }}=0$
Given that,

$$
\begin{aligned}
R= & 8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
T= & 25^{\circ} \mathrm{C}+273=298 \mathrm{~K} \\
F= & 96500 \mathrm{C} \text { and } n=2 \\
\therefore E_{\text {cell }}^{\circ} & =\frac{2.303 \times 8.314 \times 298}{2 \times 96500} \log _{10} \mathrm{~K} \\
& =\frac{0.0591}{2} \log _{10} \mathrm{~K}
\end{aligned}
$$

Given that $E^{\circ}{ }_{\text {cell }}=0.295 \mathrm{~V}$

$$
\therefore \quad 0.295=\frac{0.0591}{2} \log _{10} \mathrm{~K}
$$

$$
\log _{10} K=\frac{0.295 \times 2}{0.0591}=10
$$

antilog $\log _{10} K=$ antilog 10

$$
K=1 \times 10^{10}
$$

$\overline{48}$ On the basis of the information available from the reaction. $\frac{4}{3} \mathrm{Al}+\mathrm{O}_{2} \longrightarrow \frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3}$, $\Delta G=-827 \mathrm{~kJ} \mathrm{~mol}^{-1}$ of O_{2}, the minimum EMF required to carry out the electrolysis of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is ($F=96500 \mathrm{C} \mathrm{mol}^{-1}$)
[CBSE AIPMT 2003]
(a) 2.14 V
(b) 4.28 V
(c) 6.42 V
(d) 8.56 V

Ans. (a)

49 The most convenient method to protect the bottom of the ship made of iron is [CBSE AIPMT 2001]
(a) coating it with red lead oxide
(b) white tin plating
(c) connecting it with Mg block
(d) connecting it with Pb block

Ans. (b)
The most convenient method to protect the bottom of ship made of iron is white tin plating which prevents the build up of barnacles.

$$
\begin{aligned}
& \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2} \longrightarrow \frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \text {, } \\
& \Delta G=-827 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& 12 \mathrm{e}^{-}+6 \mathrm{O}^{2-} \longrightarrow 3 \mathrm{O}_{2} \\
& 4 \mathrm{Al}^{3+} \longrightarrow \mathrm{Al}+12 e^{-} \\
& \text {or } \quad \frac{4}{3} \mathrm{Al}^{3+} \longrightarrow \frac{4}{3} \mathrm{Al}+4 \mathrm{e}^{-} \\
& 4 \mathrm{e}^{-}+2 \mathrm{O}^{-2} \longrightarrow \mathrm{O}_{2} \\
& \Delta G=-n E F^{\circ} \quad(n=4) \\
& -827 \times 10^{3} \mathrm{~J}=-4 \times E^{\circ} \times 96500 \\
& E=\frac{827 \times 10^{3}}{4 \times 96500} \\
& E^{\circ}=2.14 \mathrm{~V}
\end{aligned}
$$

50 Standard electrode potentials are

$$
\begin{aligned}
& \mathrm{Fe}^{2+} / \mathrm{Fe}, \quad \mathrm{E}^{\circ}=-0.44 \mathrm{~V} \\
& \mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}, \mathrm{E}^{\circ}=0.77 \mathrm{~V}
\end{aligned}
$$

$\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ and Fe block are kept together, then [CBSE AIPMT 2001]
(a) Fe^{3+} increases
(b) Fe^{2+} decreases
(c) $\frac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{3+}}$ remains unchanged
(d) Fe^{2+} decreases

Ans. (b)
The metals have higher negative values of their electrode potential can displace metals having lower values from their salt solution.
So, Fe^{3+} decreases.
$51 \mathrm{Cu}^{+}(\mathrm{aq})$ is unstable in solution and undergoes simultaneous oxidation and reduction according to the reaction
[CBSE AIPMT 2000]

$$
2 \mathrm{Cu}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}^{2+}(a q)+\mathrm{Cu}(s)
$$

Choose the correct E° for above reaction if

$$
\begin{aligned}
E_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\circ} & =0.34 \mathrm{~V} \\
\text { and } \quad E_{\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}}^{\circ} & =0.15 \mathrm{~V}
\end{aligned}
$$

(a) -0.38 V
(b) $+0.49 \mathrm{~V}(\mathrm{c})+$
0.38 V
(d) -0.19 V

Ans. (c)

$$
\Delta G^{\circ}=-n F E^{\circ}
$$

From given data,
(i) $\mathrm{Cu}(\mathrm{s}) \longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$,

$$
\Delta G_{1}^{\circ}=-2(-0.34) \times F
$$

(ii) $\mathrm{Cu}^{2+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}(a q)$,

$$
\Delta G_{2}^{\circ}=-1(0.15) \times F
$$

On addition,

$$
\begin{aligned}
& C u(s) \longrightarrow \mathrm{Cu}^{+}(a q)+\mathrm{e}^{-}, \\
& \Delta G_{3}^{\circ}=-1 \times E^{\circ} \times F \\
& \text { and } \Delta G_{3}^{\circ}=\Delta G_{1}^{\circ}+\Delta G_{2}^{\circ} \\
&-n_{3} F E^{\circ}=-n_{1} F E_{1}^{\circ}-n_{2} F E_{2} \\
&-E^{\circ}=-2(-0.34)-1(0.15) \\
&=(-2 \times-0.34)+(-1 \times 0.15) \\
&-E^{\circ}=-0.68-0.15=0.53 \\
& E^{\circ}=-0.53 \mathrm{~V} \\
& C u^{+}(a q) \rightleftharpoons \mathrm{Cu}^{2+}(a q)+e^{-} ; \\
& \Delta G_{1}=-1 \times(-0.15) \times F \\
& C u^{+}(a q)+e^{-} \rightleftharpoons \mathrm{Cu}(s) ; \\
& \Delta G_{2}=-1 \times(-0.53) \times F
\end{aligned}
$$

On adding above equation we get,

$$
\begin{gathered}
2 \mathrm{Cu}^{+} \rightleftharpoons \mathrm{Cu}^{2+}+\mathrm{Cu} ; \Delta G \\
\Delta G=\Delta \mathrm{G}_{1}+\Delta \mathrm{G}_{2} \\
-n F E^{\circ}=0.15 \mathrm{~F}+(-0.53 \mathrm{~F}) \\
-F E^{\circ}==0.38 \mathrm{~F} \\
E^{\circ}=0.38 \mathrm{~V}
\end{gathered}
$$

Thus, for the result reaction E° value is 0.38 V .

52 Which one of the following pairs of substances on reaction will not evolve H_{2} gas?
[CBSE AIPMT 1998]
(a) Iron and $\mathrm{H}_{2} \mathrm{SO}_{4}$ (aq)
(b) Iron and steam
(c) Copper and $\mathrm{HCl}($ aq)
(d) Sodium and ethyl alcohol

Ans. (c)
Since copper is placed below hydrogen in the electrochemical series, thus copper does not give hydrogen with dilute acids. While all other pairs give hydrogen on reaction.

$$
\begin{aligned}
& \mathrm{Fe}+\text { dil. } \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2} \uparrow \\
& 3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2} \uparrow \\
& \text { Steam } \\
& 2 \mathrm{Na}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{H}_{2} \uparrow \\
& \mathrm{Cu}+\text { dil. } \mathrm{HCl} \longrightarrow \text { No reaction }
\end{aligned}
$$

53 Without losing its concentration ZnCl_{2} solution cannot be kept in contact with
[CBSE AIPMT 1998]
(a) Au
(b) Al
(c) Pb
(d) Ag

Ans. (b)
In electrochemical series, Al is placed above Zn and all other are present below Zn . So, aluminium displaces zinc from ZnCl_{2} solution. Hence, it cannot keep in contact with AI.

54 For the cell reaction,

$$
\begin{aligned}
\mathrm{Cu}^{2+}\left(\mathrm{C}_{1}, a q\right)+ & \mathrm{Zn}(s) \rightleftharpoons \\
& \mathrm{Zn}^{2+}\left(\mathrm{C}_{2}, a q\right)+\mathrm{Cu}(s)
\end{aligned}
$$

of an electrochemical cell, the change in free energy (ΔG) at a given temperature is a function of
[CBSE AIPMT 1998]
(a) $\ln \left(C_{1}\right)$
(b) $\ln \left(C_{2} / C_{1}\right)$
(c) $\ln \left(C_{2}\right)$
(d) $\ln \left(C_{1}+C_{2}\right)$

Ans. (b)
$\Delta G=-n F E^{\circ}$
For concentration cell, from Nernst equation,

$$
E=E_{\text {cell }}^{\circ}-\frac{R T}{n F} \ln \frac{C_{1}}{C_{2}}
$$

$$
\begin{aligned}
E_{\text {cell }}^{\circ} & =0.00 \mathrm{~V} \\
E & =\frac{-R T}{n F} \ln \frac{C_{2}}{C_{1}} \\
E & =\frac{R T}{n F} \ln \frac{C_{2}}{C_{1}} \\
C_{2} & >C_{1} \\
E & =\frac{R T}{n F} \ln \frac{C_{2}}{C_{1}}
\end{aligned}
$$

(R, T, n and F are constant) therefore, E° is based upon $\ln \frac{C_{2}}{C_{1}}$

$$
\begin{aligned}
\Delta G & =-n F E^{\circ} \\
& =-n F \times \frac{R T}{n F} \ln \frac{C_{2}}{C_{1}} \\
& =-R T \ln \frac{C_{2}}{C_{1}}
\end{aligned}
$$

Hence, at constant temperature Gibbs free energy ΔG depends upon $\ln \frac{C_{2}}{C_{1}}$.
$55 E^{\circ}$ for the cell, $\mathrm{Zn}\left|\mathrm{Zn}^{2+}(a q) \| \mathrm{Cu}^{2+}(a q)\right| \mathrm{Cu}$ is 1.10 V at $25^{\circ} \mathrm{C}$. The equilibrium constant for the reaction,

$$
\begin{aligned}
& \mathrm{Zn}(\mathrm{~s})+\mathrm{Cu}^{2+}(a q) \underset{\sim}{\rightleftharpoons} \underset{\sim}{\rightleftharpoons} \mathrm{Cu}(\mathrm{~s}) \\
&\left.+\mathrm{Zn}^{2+}\right) \text { is of the order } \\
& \text { [CBSE AIPMT 1997] }
\end{aligned}
$$

(a) 10^{-37}
(b) 10^{-28}
(c) 10^{18}
(d) 10^{17}

Ans. (a)

$$
\begin{aligned}
& \mathrm{Zn}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}(\mathrm{~s})+\mathrm{Zn}^{2+}(\mathrm{aq}), \\
& \mathrm{E}^{\circ}=+1.10 \mathrm{~V}
\end{aligned}, \begin{aligned}
& \therefore \quad E^{\circ}=\frac{0.0591}{n} \log _{10} \mathrm{~K}_{\mathrm{eq}}
\end{aligned}
$$

because at equilibrium, $E_{\text {cell }}=0$
($n=$ number of electrons exchanged $=2$)

$$
\begin{aligned}
& 1.10=\frac{0.0591}{2} \log _{10} K_{\text {eq }} \\
& \frac{2.20}{0.0591}=\log _{10} K_{\text {eq }} \\
& K_{\text {eq }}=\text { antilog } 37.225=1.66 \times 10^{-37}
\end{aligned}
$$

56 Reduction potential for the following half-cell reactions are

$$
\begin{aligned}
& \mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}, \\
&\left(E_{\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)}^{\circ}=-0.76 \mathrm{~V}\right) \\
& \mathrm{Fe} \longrightarrow \mathrm{Fe}^{2+}+2 e^{-}, \\
&\left(\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\circ}=-0.44 \mathrm{~V}\right)
\end{aligned}
$$

The EMF for the cell reaction,

$$
\mathrm{Fe}^{2+}+\mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{Fe} \text { will be }
$$

[CBSE AIPMT 1996]
(a) +0.32 V
(b) -0.32 V
(c) +1.20 V
(d) -1.20 V

Ans. (a)

$$
\begin{aligned}
& E_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{\circ}=-0.76 \mathrm{~V} \\
& E_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\circ}=-0.44 \mathrm{~V}
\end{aligned}
$$

Cell reaction,

$$
\begin{aligned}
& \mathrm{Fe}^{2+}+\mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{Fe} \\
& \begin{aligned}
E_{\text {cell }}^{\circ} & =E_{\text {(cathode) }}^{\circ}-E_{\text {(anode) }}^{\circ} \\
& =-0.44-(-0.76) \\
& =+0.32 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

57 An electrochemical cell is shown below $\mathrm{Pt}, \mathrm{H}_{2}(1 \mathrm{~atm})|\mathrm{HCl}(0.1 \mathrm{M})|$ $\mathrm{CH}_{3} \mathrm{COOH}(0.1 \mathrm{M}) \mid \mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{Pt}$ The EMF of the cell will not be zero, because [CBSE AIPMT 1995]
(a) EMF depends on molarities of acids used
(b) pH of 0.1 M HCl and $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is not same
(c) the temperature is constant
(d) acids used in two compartments are different
Ans. (b)
The EMF of the cell will not be zero because concentration of H^{+}ions in two electrolytic solutions is different. Mean HCl is strong acid where, acetic acid is weak acid and gives different pH .

58 Standard reduction potentials at $25^{\circ} \mathrm{C}$ of $\mathrm{Li}^{+} / \mathrm{Li}, \mathrm{Ba}^{2+} / \mathrm{Ba}, \mathrm{Na}^{+} / \mathrm{Na}$ and $\mathrm{Mg}^{2+} / \mathrm{Mg}$ are -3.05, -2.90, -2.71 and -2.37 V respectively. Which one of the following is the strongest oxidising agent?
[CBSE AIPMT 1994]
(a) Mg^{2+}
(b) Ba^{2+}
(c) Na^{+}
(d) Li^{+}

Ans. (a)
A cation having maximum (positive) value of standard reduction potential is the strongest oxidising agent. Hence, Mg^{2+} is the strongest oxidising agent.

TOPIC 4

Arrhenius Theory, Activation Energy and Collision Theory of Biomolecular Gaseous Reaction

59 In a typical fuel cell, the reactants (R) and product (P) are
[NEET (Oct.) 2020]
(a) $R=\mathrm{H}_{2}(g), \mathrm{O}_{2}(g) ; P=\mathrm{H}_{2} \mathrm{O}_{2}(I)$
(b) $\mathrm{R}=\mathrm{H}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g}) ; \mathrm{P}=\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(c) $R=\mathrm{H}_{2}(g), \mathrm{O}_{2}(g), \mathrm{Cl}_{2}(g) ; P=\mathrm{HClO}_{4}(a q)$
(d) $R=H_{2}(g), \mathrm{N}_{2}(g) ; P=\mathrm{NH}_{3}(a q)$

Ans. (b)
The reaction takes place in a fuel cell is

$$
\begin{aligned}
& 2 \mathrm{H}_{2}^{0}(\mathrm{~g})+\mathrm{O}_{2}^{0}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2}^{+1} \mathrm{O}^{-2}(\mathrm{I})+ \\
& \text { [at anode] [at cathode] } \underset{\text { Product (P) }}{\perp} \\
& \text { Reactants } R
\end{aligned}
$$

Heat energy [gets converted into electrical energy]

Hence, option (b) is the correct.
60 Zinc can be coated on iron to produce galvanised iron but the reverse is not possible. It is because
[CBSE AIPMT 2016, Phase II]
(a) zinc is lighter than iron
(b) zinc has lower melting point than iron
(c) zinc has lower negative electrode potential than iron
(d) zinc has higher negative electrode potential than iron
Ans. (d)
The metal with higher negative standard reduction potential, have higher tendency to get reduced.

$$
\begin{aligned}
& \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn} ; \mathrm{E}^{\circ}=-0.76 \mathrm{~V} \\
& \mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe} ; \mathrm{E}^{\circ}=-0.44 \mathrm{~V}
\end{aligned}
$$

Here, in galvanised iron, Zn has higher negative reduction potential means Zn takes electrons given by iron and itself gets reduced.
Thus, Zn works as anode and protects iron from rusting by making iron as cathode.

61 A device that converts energy of combustion of fuels like hydrogen and methane, directly into electrical energy is known as
[CBSE AIPMT 2015]
(a) fuel cell
(b) electrolytic cell
(c) dynamo
(d) Ni-Cd cell

Ans. (a)
Fuel cell is a device that converts energy of combustion of fuels like hydrogen and methane, directly into electrical energy.
Electrolytic cell converts electrical energy into chemical energy.
Dynamo is an electrical generator that produces direct current with the use of a commutator.
$\mathbf{N i}-\mathbf{C d}$ cell is a type of rechargeable battery which consists of a cadmium anode and a metal grid containing NiO_{2} acting as a cathode.

62 A button cell used in watches functions as following [NEET 2013]

$$
\begin{aligned}
\mathrm{Zn}(\mathrm{~s})+ & \mathrm{Ag}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \\
& 2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Zn}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)
\end{aligned}
$$

If half-cell potentials are

$$
\begin{aligned}
& \mathrm{Zn}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}(s), \\
& E^{\circ}=-0.76 \mathrm{~V}
\end{aligned}
$$

$$
\mathrm{Ag}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{e}^{-}
$$

$$
\longrightarrow 2 \mathrm{Ag}(s)+2 \mathrm{OH}^{-}(a q), \mathrm{E}^{\circ}=0.34 \mathrm{~V}
$$

The cell potential will be
(a) 1.10 V
(b) 0.42 V
(c) 0.84 V
(d) 1.34 V

Ans. (a)
Anode is always the site of oxidation thus, anode half-cell is
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}(\mathrm{s}), E^{\circ}=-0.76 \mathrm{~V}$
Cathode half-cell is

$$
\begin{aligned}
\mathrm{Ag}_{2} \mathrm{O}(s) & +\mathrm{H}_{2} \mathrm{O}(I)+2 \mathrm{e}^{-} \longrightarrow \\
& 2 \mathrm{Ag}(\mathrm{~s})+2 \mathrm{H}^{-}(a q), \\
E^{\circ} & =0.34 \mathrm{~V} \\
E_{\text {cell }}^{\circ} & =E^{\circ}{ }_{\text {cathode }}-E^{\circ}{ }_{\text {anode }} \\
= & 0.34-(-0.76)=+1.10 \mathrm{~V}
\end{aligned}
$$

63 The efficiency of a fuel cell is given by
[CBSE AIPMT 2007]
(a) $\Delta G / \Delta S$
(b) $\Delta G / \Delta H$
(c) $\Delta S / \Delta G$
(d) $\Delta H / \Delta G$

Ans. (b)
Efficiency of a fuel cell $(\phi)=\frac{\Delta G}{\Delta H} \times 100$
Fuel cells are expected to have an efficiency of 100%.

