4

Chemical Thermodynamics

TOPIC 1

Generalised Terms and First Law of Thermodynamics

01 Which one among the following is the correct option for right relationship between C_{p} and C_{V} for one mole of ideal gas? [NEET 2021]
(a) $C_{p}+C_{V}=R$
(b) $C_{p}-C_{V}=R$
(c) $C_{p}=R C_{V}$
(d) $C_{V}=R C_{p}$

Ans. (b)
For an ideal gas,

$$
C_{p}-C_{V}=n R
$$

(where, $n=$ number of moles of gas, $C_{p}, C_{V}=$ specific heat at constant pressure and volume, $R=$ universal gas constant)
As $n=1$, so $C_{p}-C_{V}=R$
02 The correct option for free expansion of an ideal gas under the adiabatic condition is
[NEET (Sept.) 2020]
(a) $q=0, \Delta T<0$ and $w>0$
(b) $q<0, \Delta T<0$ and $w=0$
(c) $q>0, \Delta T<0$ and $w>0$
(d) $q=0, \Delta T=0$ and $w=0$

Ans. (d)
For adiabatic process, $q=0$
For adiabatic free expansion of an ideal gas, no work will be done, because, $d V=0$.
$\therefore \quad W=p d V=0$
For adiabatic free expansion of an ideal gas, no change in internal energy.
So, $d U=0$ and $d T=0$
$\left[\because d U=n C_{V} d T\right]$
So, option (d) is correct.

03 Under isothermal condition, a gas at 300 K expands from 0.1 L to 0.25 L against a constant external pressure of 2 bar. The work done by the gas is
(Given that 1 L bar $=100 \mathrm{~J}$)
[NEET (National) 2019]
(a) 5 kJ
(b) 25 J
(c) 30 J
(d)-30 ل

Ans. (d)
Key Idea For an isothermal irreversible expansion, $W_{\text {irrev }}=-p_{\text {ext }}\left(V_{2}-V_{1}\right)$
Given, $V_{1}=0.1 \mathrm{~L}, V_{2}=0.25 \mathrm{~L}, p_{\mathrm{ext}}=2 \mathrm{bar}$ We know that,

$$
W_{\text {irrev }}=-p_{\text {ext }}\left(V_{2}-V_{1}\right)
$$

On substituting the given values in the above equation, we get

$$
\begin{aligned}
& W_{\text {irrev }}=-2 \operatorname{bar}(0.25-0.1) \mathrm{L} \\
& \quad=-2 \times 0.15 \mathrm{~L} \text { bar }=-0.3 \mathrm{~L} \text { bar } \\
& \\
& =-0.3 \times 100 \mathrm{~J} \quad[\because 1 \mathrm{~L} \text { bar }=100 \mathrm{~J}] \\
& \\
& =-30 \mathrm{~J}
\end{aligned}
$$

04 An ideal gas expands isothermally from $10^{-3} \mathrm{~m}^{3}$ to $10^{-2} \mathrm{~m}^{3}$ at 300 K against a constant pressure of 10^{5} Nm^{-2}. The work done on the gas is
[NEET (Odisha) 2019]
(a) +270 kJ
(b) -900 J
(c) +900 kJ
(d) -900 kJ

Ans. (b)
For an isothermal irreversible expansion, Work done $(W)=-p_{\text {ext }}\left(V_{2}-V_{1}\right)$
where, $V_{1}=$ initial volume

$$
V_{2}=\text { final volume }
$$

Given, $p_{\text {ext }}=10^{5} \mathrm{Nm}^{-2}$,

$$
V_{1}=10^{-3} \mathrm{~m}^{3}, V_{2}=10^{-2} \mathrm{~m}^{3}
$$

On substituting the given values in Eq, (i), We get,

$$
\begin{aligned}
W & =-10^{5} \mathrm{Nm}^{-2}\left(10^{-2} \mathrm{~m}^{3}-10^{-3} \mathrm{~m}^{3}\right) \\
& =-10^{5} \mathrm{Nm}^{-2} \times 10^{-3}(10-1) \mathrm{m}^{3} \\
& =-900 \mathrm{Nm}=-900 \mathrm{~J}
\end{aligned}
$$

05 A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L . The change in internal energy ΔU of the gas in joules will be
[NEET 2017]
(a) 1136.25 J
(b) -500 J
(c) -505 J
(d) +505 J

Ans. (c)
Key concept According to first law of thermodynamics,

$$
\Delta U=q+w
$$

where, $\Delta U=$ internal energy
$q=$ heat absorbed or evolved, $w=$ work done.
Also, work done against constant external pressure (irreversible process).

$$
w=-p_{\text {ext }} \Delta V
$$

Work done in irreversible process,

$$
\begin{aligned}
W & =-p_{\text {ext }} \Delta V=-p_{\text {ext }}\left(V_{2}-V_{1}\right) \\
& =-2.5 \mathrm{~atm}(4.5 \mathrm{~L}-2.5 \mathrm{~L}) \\
& =-5 \mathrm{~L} \text { atm }=-5 \times 101.3 \mathrm{~J} \\
& =-505 \mathrm{~J}
\end{aligned}
$$

Since, the system is well insulated, $q=0$

$$
\therefore \quad \Delta U=W=-505 \mathrm{~J}
$$

Hence, change in internal energy, ΔU of the gas is -505 J .

06 Which one of the following is correct option for free expansion of an ideal gas under adiabatic condition?
[CBSE AIPMT 2011]
(a) $q \neq 0, \Delta T=0, W=0$
(b) $q=0, \Delta T=0, W=0$
(c) $q=0, \Delta T<0, W \neq 0$
(d) $q=0, \Delta T \neq 0, W=0$

Ans. (b)
In adiabatic process, heat exchange is constant, so $\mathrm{q}=0$ and for free expanion, $W=0, \therefore \Delta T=0$.

07 Which of the following are not state functions?
[CBSE AIPMT 2008]
I. $q+W$
II. q
III. W
IV. H-TS
(a) I and IV
(b) II, III and IV
(c) I, II and III
(d) II and III

Ans. (d)
The thermodynamic parameters which depend only upon the initial and final states of system, are called state
functions, such as enthalpy ($H=q+W$), Gibbs free energy ($G=H-T S$), etc. While those parameters which depend on the path by which the process is performed rather than on the initial and final states, are called path functions, such as work done, heat, etc.

08 The work done during the expansion of a gas from a volume of $4 \mathrm{dm}^{3}$ to $6 \mathrm{dm}^{3}$ against a constant external pressure of 3 atm, is
[CBSE AIPMT 2004]
(a) -6 J
(b) - 608 J
(c) +304 J
(d) -304 J

Ans. (b)
Work done $(W)=-p_{\text {ext }}\left(V_{2}-V_{1}\right)$

$$
\begin{aligned}
& =-3 \times(6-4)=-6 \mathrm{~L} \text { atm } \\
& =-6 \times 101.32 \mathrm{~J}(\because 1 \mathrm{~L} \text { atm }=101.32 \mathrm{~J}) \\
& =-607.92 \approx-608 \mathrm{~J}
\end{aligned}
$$

09 The molar heat capacity C of water at constant pressure is $75 \mathrm{JK}^{-1} \mathrm{~mol}$ ${ }^{-1}$, when 1.0 kJ of heat is supplied to 100 g of water which is free to expand, the increase in temperature of water is
[CBSE AIPMT 2003]
(a) 4.8 K
(b) 6.6 K
(c) 1.2 K
(d) 2.4 K

Ans. (d)
According to heat capacity rule,

$$
q=m c \Delta T, \quad c=\frac{q}{m\left(T_{2}-T_{1}\right)}
$$

$$
\text { Given that, } \begin{aligned}
c & =75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
\mathrm{q} & =1.0 \mathrm{~kJ}=1000 \mathrm{~J} \\
\text { Mass } & =100 \mathrm{~g} \text { water }
\end{aligned}
$$

Molar mass of water $=18 \mathrm{~g}$

$$
\begin{gathered}
75=\frac{1000}{5.55 \times \Delta T} \\
\\
\left(\text { Number of moles }=\frac{100}{18}=5.55\right) \\
\therefore \quad \Delta T=\frac{1000}{5.55 \times 75}=2.4 \mathrm{~K}
\end{gathered}
$$

10 In a closed insulated container a liquid is stirred with a paddle to increase the temperature, which of the following is true?
[CBSE AIPMT 2002]
(a) $\Delta E=W \neq 0, q=0$
(b) $\Delta E=W=0, q \neq 0$
(c) $\Delta E=0, W=q \neq 0$
(d) $W=0, \Delta E=q \neq 0$

Ans. (a)
In closed insulated container a liquid is stirred with a paddle to increase the temperature, therefore it behaves as adiabatic process, so for it $q=0$.
Hence, from first law of thermodynamics

$$
\begin{aligned}
\Delta E & =q+W \\
\text { if, } \quad q & =0
\end{aligned}
$$

$\therefore \Delta E=W$ but not equal to zero.
11 When 1 mole gas is heated at constant volume, temperature is raised from 298 to 308 K . Heat supplied to the gas is 500 J . Then, which statement is correct?
[CBSE AIPMT 2001]
(a) $q=W=500$ J, $\Delta E=0$
(b) $q=\Delta E=500 \mathrm{~J}, W=0$
(c) $q=-W=500 \mathrm{~J}, \Delta E=0$
(d) $\Delta E=0, q=W=-500$ J

Ans. (b)
We know that, $\quad \Delta H=\Delta E+p \Delta V$

$$
\begin{array}{lrl}
\text { When, } & \Delta V & =0 \\
\therefore & \Delta H & =\Delta E
\end{array}
$$

From first law of thermodynamics

$$
\begin{aligned}
\Delta E & =q-W \\
\text { In given problem } \Delta H & =500 \mathrm{~J} \\
-W & =-p \Delta V, \Delta V=0 \\
\text { So, } \quad \Delta E & =q=500 \mathrm{~J}
\end{aligned}
$$

12 In an endothermic reaction, the value of ΔH is [CBSE AIPMT 1999]
(a) zero
(b) positive
(c) negative
(d) constant

Ans. (b)
For endothermic reactions standard heat of reaction (ΔH) is positive because in these reactions total energy of reactants is lower than that of products, i.e. $E_{R}<E_{P}$

So, $\quad \Delta H=E_{P}-E_{R}=+$ ve
13 One mole of an ideal gas at 300 K is expanded isothermally from an initial volume of 1 L to 10 L . The ΔE for this process is ($R=2 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$)
[CBSE AIPMT 1998]
(a) 163.7 cal
(b) zero
(c) 1381.1 cal
(d) 9 L atm

Ans. (b)
Isothermal process means temperature remains constant. At constant temperature, internal energy (ΔE) also remains constant. So, $\Delta E=0$

14 During isothermal expansion of an ideal gas, its [CBSE AIPMT 1991, 94]
(a) internal energy increases
(b) enthalpy decreases
(c) enthalpy remains unaffected
(d) enthalpy reduces to zero

Ans. (c)
We know that,

$$
H=E+W
$$

Enthalpy $=$ internal energy + pressure \times volume

$$
\begin{aligned}
H & =E+p V \\
\Delta H & =\Delta E+\Delta(p V) \\
\Delta H & =\Delta E+\Delta\left(n_{g} R T\right)(\because p V=n R T)
\end{aligned}
$$

For isothermal expansion of ideal gas, $\Delta T=0$

$$
\therefore \quad \Delta H=\Delta E
$$

TOPIC 2

Reactions Related to Enthalpies and Hess's Law

15 At standard conditions, if the change in the enthalpy for the following reaction is $-109 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HBr}(\mathrm{g})$
Given that, bond energy of H_{2} and Br_{2} is $435 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $192 \mathrm{~kJ} \mathrm{~mol}^{2}$ ${ }^{-1}$ respectively, what is the bond energy (in $\mathrm{KJ} \mathrm{mol}^{-1}$) of HBr ?
[NEET (Oct.) 2020]
(a) 368
(b) 736
(c) 518
(d) 259

Ans. (a)

$$
\begin{aligned}
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HBr}(\mathrm{~g}) \\
& {[\mathrm{H}-\mathrm{H}] \quad[\mathrm{Br}-\mathrm{Br}] \quad[\mathrm{H}-\mathrm{Br}]} \\
& \Rightarrow \quad \Delta_{r} H=(\Sigma B E)_{\text {Reactants }}-(\Sigma B E)_{\text {Products }} \\
& {[\because B E=\text { bond energy }]} \\
& \Rightarrow-109=\left[(\mathrm{BE})_{\mathrm{H}_{2}}+(\mathrm{BE})_{\mathrm{Br}_{2}}\right]-(\mathrm{BE})_{\mathrm{HBr}} \times 2 \\
& =(435+192)-(\mathrm{BE})_{\mathrm{HBr}} \times 2 \\
& \Rightarrow(B E)_{\mathrm{HBr}}=368 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

16 The bond dissociation energies of X_{2}, Y_{2} and $X Y$ are in the ratio of $1: 0.5: 1 . \Delta H$ for the formation of $X Y$ is $-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond dissociation energy of X_{2} will be
[NEET 2018]
(a) $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. (a)
Key Concept Relation between heat of reaction $\left(\Delta_{r} H\right)$ and bond energies (BE) of reactants and products is given by

$$
\Delta_{\mathrm{r}} H=\Sigma B E_{\text {Reactants }}-\Sigma B E_{\text {Products }}
$$

The reaction of formation for $X Y$ is

$$
\begin{aligned}
\frac{1}{2} X_{2}(g)+\frac{1}{2} Y_{2}(g) \longrightarrow & X Y(g) ; \\
\Delta H & =-200 \mathrm{k} \mathrm{~mol}^{-1}
\end{aligned}
$$

Given, the bond dissociation energies of X_{2}, Y_{2} and $X Y$ are in the ratio $1: 0.5: 1$. Let the bond dissociation energies of X_{2}, Y_{2} and $X Y$ are a $\mathrm{kJmol}^{-1}, 0.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and a $\mathrm{kJ} \mathrm{mol}^{-1}$, respectively.

$$
\begin{aligned}
\therefore \quad \Delta_{\mathrm{r}} \mathrm{H} & =\Sigma \mathrm{BE}_{\text {Reactants }}-\Delta \mathrm{BE}_{\text {Products }} \\
& =\left[\frac{1}{2} \times a+\frac{1}{2} \times 0.5 a\right]-[1 \times a] \\
-200 & =\frac{a}{2}+\frac{a}{4}-a \\
-200 & =\frac{2 a+a-4 a}{4}=\frac{-a}{4} \\
a & =800 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

\therefore The bond dissociation energy of

$$
x_{2}=a \mathrm{k} \mathrm{~mol}^{-1}=800 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

17 Consider the following liquid-vapour equilibrium
[NEET 2016, Phase I]
Liquid \rightleftharpoons Vapour
Which of the following relations is correct?
(a) $\frac{d \ln P}{d T}=\frac{-\Delta H_{v}}{R T}$
(b) $\frac{d \ln P}{d T^{2}}=\frac{-\Delta H_{v}}{T^{2}}$
(c) $\frac{d \ln P}{d T}=\frac{-\Delta H_{v}}{R T^{2}}$
(d) $\frac{d \ln G}{d T^{2}}=\frac{-\Delta H_{v}}{R T^{2}}$

Ans. (c)
The given phase equilibria is

Liquid \rightleftharpoons Vapour
This equilibrium states that, when liquid is heated, it converts into vapour but on cooling, it further converts into liquid, which is derived by Clausius Clapeyron and the relationship is written as,

$$
\frac{d \ln p}{d T}=-\frac{\Delta H_{v}}{R T^{2}}
$$

where, $\Delta H_{v}=$ Heat of vaporisation
18 The heat of combustion of carbon to CO_{2} is $-393.5 \mathrm{~kJ} / \mathrm{mol}$. The heat released upon the formation of 35.2 g of CO_{2} from carbon and oxygen gas is
[CBSE AIPMT 2015]
(a) -315 kJ
(b) +315 kJ
(c) -630 kJ
(d) -3.15 kJ

Ans. (a)
Given, $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$;

$$
\Delta_{f} H=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

\because Heat released on formation of 44 g or 1 mole

$$
\mathrm{CO}_{2}=-395.5 \mathrm{~kJ} \mathrm{~mol}
$$

\because Heat released on formation of 35.2 g of CO_{2}

$$
\begin{aligned}
& =\frac{-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}}{44 \mathrm{~g}} \times 35.2 \mathrm{~g} \\
& =-315 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

19 A reaction having equal energies of activation for forward and reverse reactions has
[NEET 2013]
(a) $\Delta S=0$
(b) $\Delta G=0$
(c) $\Delta H=0$
(d) $\Delta H=\Delta G=\Delta S=0$

Ans. (c)
Energy profile diagram for a reaction is as

From the figure, it is clear that

$$
\left(E_{a}\right)_{b}=\left(E_{a}\right)_{f}+\Delta H
$$

[Here $\left(E_{a}\right)_{b}=$ activation energy of backward reaction and $\left(E_{a}\right)_{f}=$ activation energy of forward reaction].

$$
\begin{array}{ll}
\text { If } & \left(E_{a}\right)_{b}=\left(E_{a}\right)_{f} \\
\text { then } & \Delta H
\end{array}
$$

20 Standard enthalpy of vaporisation $\Delta_{\text {vap }} H^{\circ}$ for water at $100^{\circ} \mathrm{C}$ is 40.66 $\mathrm{kJ} \mathrm{mol}{ }^{-1}$. The internal energy of vaporisation of water at $100^{\circ} \mathrm{C}$ (in $\mathrm{kJ} \mathrm{mol}^{-1}$) is (assume water vapour to behave like an ideal gas).
[CBSE AIPMT 2012]
(a) +37.56
(b) -43.76
(c) +43.76
(d) +40.66

Ans. (a)

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \xrightarrow{100^{\circ} \mathrm{C}} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \Delta_{\text {vap }} H^{\circ}=\Delta_{\text {vap }} E^{\circ}+\Delta n_{g} R T \\
& \Delta_{\text {vap }} H^{\circ}=\text { enthalpy of vaporisation } \\
&=40.66 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

For the above reaction,

$$
\begin{gathered}
\Delta n_{g}=n_{p}-n_{r}=1-0=1 \\
R=8.314 \\
T=100^{\circ} \mathrm{C}=273+100=373 \mathrm{~K} \\
\therefore 40.66 \mathrm{~kJ} \mathrm{~mol}^{-1}=\Delta_{\text {vap }} E^{\circ}+1 \times 8.314 \\
\times 10^{-3} \times 373 \\
\Delta_{\text {vap }} E^{\circ}=40.66 \mathrm{~kJ} \mathrm{~mol}^{-1}-3.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
=+37.56 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{gathered}
$$

21 Enthalpy change for the reaction,

$$
4 \mathrm{H}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2}(\mathrm{~g}) \text { is }-869.6 \mathrm{~kJ}
$$

The dissociation energy of $\mathrm{H}-\mathrm{H}$ bond is
[CBSE AIPMT 2011]
(a) -869.6 kJ
(b) +434.8 kJ
(c) +217.4 kJ
(d) -434.8 kJ

Ans. (b)

$$
\begin{gathered}
4 \mathrm{H}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-869.6 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{H}(\mathrm{~g}), \Delta \mathrm{H}=869.6 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}(\mathrm{~g}),
\end{gathered}
$$

Dissociation energy of $\mathrm{H}-\mathrm{H}$ bond

$$
=\frac{869.6}{2}=434.8 \mathrm{~kJ}
$$

22 From the following bond energies
$\mathrm{H}-\mathrm{H}$ bond energy : $431.37 \mathrm{~kJ} \mathrm{~mol}^{-1}$ $\mathrm{C}=\mathrm{C}$ bond energy: $606.10 \mathrm{~kJ} \mathrm{~mol}^{-1}$ C-C bond energy : $336.49 \mathrm{~kJ} \mathrm{~mol}^{-1}$ C-H bond energy : $410.50 \mathrm{k} \mathrm{mol}^{-1}$ Enthalpy for the reaction,

will be
[CBSE AIPMT 2009]
(a) $1523.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $-243.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $-120.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $553.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. (c)
For reaction,

$$
\stackrel{\Delta H_{\text {reaction }}}{=\sum \mathrm{BE}_{(\text {reactant })}-\sum_{[\mathrm{BE}=\text { bond energy }]} \mathrm{BE}_{(\text {product }}}
$$

$$
\begin{aligned}
& \Delta H_{r}=\left[4 \times \mathrm{BE}_{(\mathrm{C}-\mathrm{H})}+1 \times \mathrm{BE}_{(\mathrm{C}==\mathrm{C})}+1\right. \\
& \left.\quad \times \mathrm{BE}_{(\mathrm{HHH})}\right]-\left[6 \times \mathrm{BE}_{(\mathrm{CH})}+1 \times \mathrm{BE}_{(\mathrm{C}-\mathrm{C})}\right]
\end{aligned}
$$

$$
=(4 \times 410.50+1 \times 606.10+1 \times 431.37)
$$

$$
-[(6 \times 410.50)+(1 \times 336.49)] \mathrm{kJmol}^{-1}
$$

$$
=[1642+606.1+431.37]
$$

$$
-[2463+336.49] \mathrm{kJmol}^{-1}
$$

$$
=[2679.47]-[2799.49] \mathrm{kJmol}^{-1}
$$

$$
=-120.0 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

23 Bond dissociation enthalpy of H_{2}, Cl_{2} and HCl are 434,242 and 431 kJ mol^{-1} respectively. Enthalpy of formation of HCl is
[CBSE AIPMT 2008]
(a) $93 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $-245 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $-93 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $245 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. (c)

24 Given that bond energies of $\mathrm{H}-\mathrm{H}$ and $\mathrm{Cl}-\mathrm{Cl}$ are $430 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and 240 $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ respectively and $\Delta \mathrm{H}_{f}$ for HCl is $-90 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Bond enthalpy of HCl is
[CBSE AIPMT 2007]
(a) $290 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $380 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $425 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $245 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. (b)

$$
\text { or } \begin{aligned}
\Delta H_{\text {reaction }} & =\Delta_{\mathrm{H}-\mathrm{H}}+\Delta \mathrm{H}_{\mathrm{Cl}-\mathrm{Cl}}-2 \Delta \mathrm{H}_{\mathrm{HCl}} \\
\Delta \mathrm{H}_{\mathrm{H}-\mathrm{Cl}} & =\frac{430+240-(-90)}{2} \\
& =\frac{760}{2}=380 \mathrm{k} \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Given, } \quad \Delta H_{\mathrm{H}-\mathrm{H}}=434 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta \mathrm{H}_{\mathrm{Cl}}-\mathrm{Cl}=242 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta H_{\mathrm{H}-\mathrm{Cl}}=431 \mathrm{~kJ} / \mathrm{mol} \\
& \frac{1}{2} \mathrm{H}_{2}+\frac{1}{2} \mathrm{Cl}_{2} \longrightarrow \mathrm{HCl}, \Delta \mathrm{H}_{\mathrm{r}}=\text { ? } \\
& \Delta H_{r}=\frac{1}{2} \times \Delta H_{H — H}+\frac{1}{2} \\
& \times \Delta \mathrm{H}_{\mathrm{Cl}}-\mathrm{Cl}-\Delta \mathrm{H}_{\mathrm{H}}-\mathrm{Cl} \\
& =\frac{1}{2} \times 434+\frac{1}{2} \times 242-431 \\
& =217+121-431=-93 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

25 Consider the following reactions,
(i) $\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}($ I),

$$
-x_{1} \mathrm{~kJ} \mathrm{~mol}_{1}^{-1}
$$

(ii) $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$, $x_{2} \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iii) $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

$$
-x_{3} \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(iv) $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$

$$
+\mathrm{H}_{2} \mathrm{O}(I)_{1}+x_{4} \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(I)$ is
[CBSE AIPMT 2007]
(a) $-x_{2} \mathrm{KJ} \mathrm{mol}^{-1}$
(b) $+x_{3} \mathrm{KJ} \mathrm{mol}^{-1}$
(c) $-x_{4} \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $+x_{1} \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. (a)
Enthalpy of formation The amount of heat evolved or absorbed during the formation of 1 mole of a compound from its constituent elements is known as heat of formation. So, the correct answer is

$$
\begin{aligned}
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow & \mathrm{H}_{2} \mathrm{O}(I), \\
\Delta H & =-x_{2} \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

26 The enthalpy of combustion of H_{2}, cyclohexene ($\mathrm{C}_{6} \mathrm{H}_{10}$) and cyclohexane ($\mathrm{C}_{6} \mathrm{H}_{12}$) are - 241 , -3800 and -3920 kJ per mol respectively. Heat of hydrogenation of cyclohexene is
[CBSE AIPMT 2006]
(a) -121 kJ per mol
(b) +121 kJ per mol
(c) +242 kJ per mol(d) -242 kJ per mol

Ans. (a)

$\Delta H=[\Delta H$ of combustion of cyclohexane

- (ΔH of combustion of cyclohexene
$+\Delta H$ of combustion of $\left.\left.\mathrm{H}_{2}\right)\right]$
$=-[-3920-(-3800-241)] \mathrm{kJ}$
$=-[-3920+4041] \mathrm{kJ}$

$$
=-[121] \mathrm{kJ}=-121 \mathrm{~kJ}
$$

27 Assume each reaction is carried out in an open container. For which reaction will $\Delta H=\Delta E$?
[CBSE AIPMT 2006]
(a) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HBr}(\mathrm{g})$
(b) $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
(c) $\mathrm{PCl}_{5}(\mathrm{~g}) \longrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(d) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$

Ans. (a)
As we know that,

$$
\begin{aligned}
& \Delta H \\
\text { or } & =\Delta E+p \Delta V \\
\Delta H & =\Delta E+\Delta n_{g} R T
\end{aligned}
$$

where, $\Delta n_{g} \rightarrow$ number of gaseous moles of product - number of gaseous moles of reactant
If $\Delta n g=0$ (for reactions in which the total number of moles of gaseous products are equal to total number of moles of gaseous reactants), therefore $\Delta H=\Delta E$ So, for reaction (a) $\Delta n=2-2=0$
Hence, for reaction (a), $\Delta H=\Delta E$
28 The absolute enthalpy of neutralisation of the reaction
[CBSE AIPMT 2005]
$\mathrm{MgO}(\mathrm{s})+2 \mathrm{HCl}(a q) \longrightarrow \mathrm{MgCl}_{2}(a q)$ $+\mathrm{H}_{2} \mathrm{O}(I)$ will be
(a) less than $-57.33 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $-57.33 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) greater than $-57.33 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $57.33 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. (a)
Heat of neutralisation of strong acid and strong base is -57.33 kJ . MgO is weak base while HCl is strong acid, so the heat of neutralisation of MgO and HCl is lower than -57.33 kJ because MgO requires some heat for ionisation, therefore the net released amount of heat is decreased.

29 If the bond energies of $\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}$ and $\mathrm{H}-\mathrm{Br}$ are 433, 192 and $364 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively, then ΔH° for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HBr}(\mathrm{g})$ is
[CBSE AIPMT 2004]
(a) -261 kJ
(b) +103 kJ
(c) +261 kJ
(d) -103 kJ

Ans. (d)
For reaction,

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HBr}(\mathrm{~g}) \Delta H^{\circ}=?
$$

$\Delta H^{\circ}=-[(2 \times$ bond energy of HBr$)$ - (bond energy of $\mathrm{H}_{2}+$ bond energy of $\left.\left.\mathrm{Cl}_{2}\right)\right]$

$$
\begin{aligned}
\Delta H^{\circ} & =-[2 \times(364)-(433+192)] \mathrm{kJ} \\
& =-[728-(625)] \mathrm{kJ}=-103 \mathrm{~kJ}
\end{aligned}
$$

30 For the reaction,

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g}) \\
&+4 \mathrm{H}_{2} \mathrm{O}(I)
\end{aligned}
$$

at constant temperature, $\Delta H-\Delta E$ is
[CBSE AIPMT 2003]
(a) $+3 R T$
(b) $-R T$
(c) $+R T$
(d) $-3 R T$

Ans. (d)
For the reaction,

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$\Delta n_{g}=$ number of gaseous moles of products - number of gaseous moles of reactants $=3-6=-3$

$$
\therefore \quad \Delta H=\Delta E+\Delta n R T
$$

or $\quad \Delta H-\Delta E=\Delta n R T$
$\therefore \quad \Delta H-\Delta E=-3 R T$
31 For which one of the following equations ΔH_{r}° equal to ΔH_{f}° for the product?
[CBSE AIPMT 2003]
(a) $\mathrm{Xe}(\mathrm{g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{XeF}_{4}(\mathrm{~g})$
$(\mathrm{b}) 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
$(c) \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$
(d) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow$

$$
\mathrm{CH}_{2} \mathrm{Cl}_{2}(1)+2 \mathrm{HCl}(\mathrm{~g})
$$

Ans. (a)
When one mole of a substance is directly formed from its constituent elements, then the enthalpy change is called heat

of formation.

For the reaction,

$$
\begin{aligned}
\mathrm{Xe}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) & \longrightarrow \mathrm{XeF}_{4}(\mathrm{~g}) \\
\Delta H_{\text {react }}^{\circ} & =\Delta H_{f}^{\circ}
\end{aligned}
$$

32 Heat of combustion ΔH° for $\mathrm{C}(s)$, $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{CH}_{4}(\mathrm{~g})$ are $-94,-68$ and $-213 \mathrm{kcal} / \mathrm{mol}$. Then, ΔH° for $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})$ is
[CBSE AIPMT 2002]
(a) $-17 \mathrm{kcal} / \mathrm{mol}$
(b) $-111 \mathrm{kcal} / \mathrm{mol}$
(c) $-170 \mathrm{kcal} / \mathrm{mol}$
(d) $-85 \mathrm{kcal} / \mathrm{mol}$

Ans. (a)
For reaction,

$$
\begin{gather*}
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g}), \Delta \mathrm{H}^{\circ}=? \\
\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}, \Delta \mathrm{H}=-94 \mathrm{kcal} \tag{i}\\
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}, \\
\Delta \mathrm{H}=-68 \times 2 \mathrm{kcal} \tag{ii}\\
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \\
\Delta \mathrm{H}=-213 \mathrm{kcal} . \tag{iii}
\end{gather*}
$$

On adding Eqs. (i) and (ii) and then subtracting Eq. (iii)

$$
\begin{aligned}
& =(-94)+(-2 \times 68)-(-213) \\
& =-230+213=-17 \mathrm{k} \mathrm{cal} / \mathrm{mol}
\end{aligned}
$$

33 Enthalpy of the reaction,
$\mathrm{CH}_{4}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}$, is negative. If enthalpy of combustion of CH_{4} and $\mathrm{CH}_{3} \mathrm{OH}$ are x and y respectively, then which relation is correct?
[CBSE AIPMT 2001]
(a) $x>y$
(b) $x<y$
(c) $x=y$
(d) $x \geq y$

Ans. (b)

$$
\begin{array}{cc}
& \mathrm{CH}_{4}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(I) \\
\therefore \Delta H & =-\left[\left(\Delta H_{c} \text { of } \mathrm{CH}_{3} \mathrm{OH}\right)-\left(\Delta H_{c} \text { of } \mathrm{CH}_{4}\right)\right] \\
& =-[(-y)-(-x)]=-[-y+x]=y-x \\
\therefore & x<y
\end{array}
$$

34 Change in enthalpy for reaction,

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(I)+\mathrm{O}_{2}(\mathrm{~g})
$$

if heat of formation of $\mathrm{H}_{2} \mathrm{O}_{2}$ (I) and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ are -188 and $-286 \mathrm{~kJ} / \mathrm{mol}$ respectively is [CBSE AIPMT 2001]
(a) $-196 \mathrm{~kJ} / \mathrm{mol}$
(b) $+196 \mathrm{~kJ} / \mathrm{mol}$
(c) $+948 \mathrm{~kJ} / \mathrm{mol}$
(d) $-948 \mathrm{~kJ} / \mathrm{mol}$

Ans. (a)

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}=? \\
& \Delta \mathrm{H}= {\left[\left(2 \times \Delta \mathrm{H}_{\mathrm{f}} \text { of } \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\left(\Delta \mathrm{H}_{4} \text { of } \mathrm{O}_{2}(\mathrm{~g})\right]\right.\right.} \\
&\left.-\left(2 \times \Delta \mathrm{H}_{4} \text { of } \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})\right)\right] \\
&=[(2 \times-286)+(0)-(2 \times-188)] \\
&=[-572+376]=-196 \mathrm{~kJ} / \mathrm{mol}]
\end{aligned}
$$

35 If ΔE is the heat of reaction for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$ $+3 \mathrm{H}_{2} \mathrm{O}(I)$ at constant volume, the ΔH (heat of reaction at constant pressure), then the correct relation is
[CBSE AIPMT 2000]
(a) $\Delta H=\Delta E+R T$
(b) $\Delta H=\Delta E-R T$
(c) $\Delta H=\Delta E-2 R T$
(d) $\Delta H=\Delta E+2 R T$

Ans. (b)
We know that, $\Delta H=\Delta E+\Delta n_{g} R T$ where, $\Delta n_{g}=$ total number of moles of gaseous product - total number of moles of gaseous reactant

$$
=2-3=-1
$$

$$
\text { So, } \quad \Delta H=\Delta E-R T
$$

36 From the given reactions, $\mathrm{S}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{3}(\mathrm{~g})+2 x \mathrm{kcal}$ $\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+y$ kcal, t he heat of formation of SO_{2} is
[CBSE AIPMT 1999]
(a) $(x+y)$
(b) $(x-y)$
(c) $(2 x+y)$
(d) $(2 x-y)$

Ans. (d)

$$
\begin{equation*}
\mathrm{S}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{3}(\mathrm{~g})+2 x \mathrm{kcal} \tag{i}
\end{equation*}
$$

By inverting second equation we get,

$$
\mathrm{SO}_{3}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})-y \mathrm{kcal} .
$$

On addition Eqs. (i) and (ii)

$$
S(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{SO}_{2}(g)+(2 x-y) \mathrm{kcal}
$$

Hence, heat of formation of SO_{2} is $(2 x-y)$ kcal.

37 Given that,

$$
\begin{aligned}
& \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}), \\
& \Delta \mathrm{H}^{\circ}=-x \mathrm{~kJ} \\
& 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}), \\
& \Delta \mathrm{H}^{\circ}=-y \mathrm{~kJ}
\end{aligned}
$$

The enthalpy of formation of carbon monoxide will be
[CBSE AIPMT 1997]
(a) $y-2 x$
(b) $2 x-y$
(c) $\frac{y-2 x}{2}$
(d) $\frac{2 x-y}{2}$

Ans. (c)

$$
\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}, \quad \Delta \mathrm{H}^{\circ}=-x \mathrm{~kJ} \ldots \text {...i) }
$$

On reversing given second equation we get,

$$
\begin{array}{rl}
2 \mathrm{CO}_{2} & \longrightarrow \mathrm{CO}+\mathrm{O}_{2}, \quad \Delta \mathrm{H}^{\circ}=+y \mathrm{~kJ} \\
\text { or } \quad \mathrm{CO}_{2} & \mathrm{CO}+1 / 2 \mathrm{O}_{2}, \\
\Delta \mathrm{H}^{\circ}=+y / 2 \mathrm{~kJ} \ldots(\mathrm{ii})
\end{array}
$$

From Eqs. (i) and (ii)(by addition)

$$
\begin{aligned}
\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} & \longrightarrow \mathrm{CO}, \\
\Delta H^{\circ} & =\frac{y}{2}-x=\frac{y-2 x}{2} \mathrm{~kJ}
\end{aligned}
$$

38 If enthalpies of formation of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(I)$ at $25^{\circ} \mathrm{C}$ and 1 atm pressure are 52, -394 and $-286 \mathrm{~kJ} / \mathrm{mol}$, the enthalpy of combustion of ethene is equal to
[CBSE AIPMT 1995]
(a) $-141.2 \mathrm{~kJ} / \mathrm{mol}$
(b) $-1412 \mathrm{~kJ} / \mathrm{mol}$
(c) $+14.2 \mathrm{~kJ} / \mathrm{mol}$
(d) $+1412 \mathrm{~kJ} / \mathrm{mol}$

Ans. (b)
Combustion of hydrocarbon,

$$
\begin{gathered}
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\Delta_{\mathrm{r}} \mathrm{H}=\Sigma \Delta_{f} \mathrm{H}_{p}-\Sigma \Delta_{f} \mathrm{H}_{r} \\
=\left\{2 \times \Delta_{f} \mathrm{H}\left(\mathrm{CO}_{2}\right)+2 \times \Delta_{f} \mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\} \\
-\left\{\Delta_{f} \mathrm{H}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)+3 \Delta_{f} \mathrm{H}\left(\mathrm{O}_{2}\right)\right\} \\
=(2 \times-394+2 \times-286)-(52+3 \times 0) \\
=-788-572-52=-1412 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{gathered}
$$

39 For the reaction, [CBSE AIPMT 1991]

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}, \Delta \mathrm{H}=?
$$

(a) $\Delta E+2 R T$
(b) $\Delta E-2 R T$
(c) $\Delta H=R T$
(d) $\Delta E-R T$

Ans. (b)
According to enthalpy equation

$$
\underset{\substack{\text { Enthalpy } \\ \text { change }}}{\Delta H}=\underset{\substack{\text { Internal } \\ \text { energy }}}{\Delta E}+\Delta n_{g} R T
$$

$$
\begin{aligned}
\Delta n= & \\
& \quad\left[\Delta n=\begin{array}{c}
n_{P} \\
\text { Product } \\
\text { mole }
\end{array}\right. \\
& \\
& =2-4=-2
\end{aligned}
$$

40 Equal volumes of molar hydrochloric acid and sulphuric acid are neutralised by dilute NaOH solution and $x \mathrm{kcal}$ and $y \mathrm{kcal}$ of heat are liberated respectively. Which of the following is true?
(a) $x=y$
[CBSE AIPMT 1991]
(b) $x=\frac{1}{2} y$
(c) $x=2 y$
(d) None of the above

Ans. (b)

$$
\begin{aligned}
& \mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+x \text { kcal } \\
& \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
&+y \text { kcal }
\end{aligned}
$$

1 molar $\mathrm{HCl}=1 \mathrm{~g}$ - equivalent of HC 1 molar $\mathrm{H}_{2} \mathrm{SO}_{4}=2 \mathrm{~g}$ - equivalent of $\mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\text { so, } \quad y=2 x \Rightarrow x=\frac{1}{2} y
$$

41 If ΔH is the change in enthalpy and ΔE, the change in internal energy accompaning a gaseous reaction, then
[CBSE AIPMT 1990]
(a) ΔH is always greater than ΔE
(b) $\Delta H<\Delta E$ only if the number of moles of products is greater than the number of moles of the reactants
(c) ΔH is always less than ΔE
(d) $\Delta H<\Delta E$ only if the number of moles of products is less than the number of moles of the reactants
Ans. (d)
Reactions in which there is a decrease in the number of moles of the gaseous components,
i.e. Δn_{g} is negative, the enthalpy change (ΔH) is lesser than the internal energy change (ΔE).
Reaction in which there is a increase in the number of moles of gaseous components i.e. $\Delta n g$ is positive, the enthalpy change is greater than the internal energy change.

$$
\Delta H=\Delta E+\Delta n_{g} R T
$$

TOPIC 3

Entropy, Free Energy Change and Spontaneity

42 For irreversible expansion of an ideal gas under isothermal condition the correct option is
[NEET 2021]
(a) $\Delta U=0, \Delta S_{\text {total }}=0$
(b) $\Delta U \neq 0, \Delta S_{\text {total }} \neq 0$
(c) $\Delta U=0, \Delta S_{\text {total }} \neq 0$
(d) $\Delta \cup \neq 0, \Delta S_{\text {total }}=0$

Ans. (c)
The change in internal energy depends on the temperature. For isothermal process, $\Delta T=0$.
So, $\quad \Delta U=0$.
With an expansion of an ideal gas, more space is available for the gaseous particles.
\therefore Entropy of gas increases so, entropy of system is not zero.

$$
\text { i.e. } \quad \Delta S \neq 0
$$

43 If for a certain reaction $\Delta_{r} \mathrm{H}$ is 30 $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ at 450 K , the value of $\Delta_{\mathrm{r}} S$ (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$) for which the same reaction will be spontaneous at the same temperature is
[NEET (Oct.) 2020]
(a) 70
(b) -33
(c) 33
(d) -70

Ans. (a)
$\Delta G=\Delta H-T \Delta S$ (Gibbs equation) For a spontaneous reaction,

$$
\begin{aligned}
& \Delta G<0, \text { i.e. } T \Delta S>\Delta H \\
& \Rightarrow \quad T>\frac{\Delta H}{\Delta S}=\frac{30 \times 1000 \mathrm{~J} \mathrm{~mol}^{-1}}{\Delta \mathrm{~S}} \\
& \Rightarrow \Delta S>\frac{30 \times 1000 \mathrm{~J} \mathrm{~mol}^{-1}}{450 \mathrm{~K}} \\
& \quad=66.67 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

$$
\text { [Given, } T=450 \mathrm{~K} \text {] }
$$

When $\Delta S>66.67 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, the reaction will be spontaneous.
So, from the options,
$\Delta_{\mathrm{r}} \mathrm{S}=70 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ indicates spontaneity of the reaction.

44 Hydrolysis of sucrose is given by the following reaction.
Sucrose $+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$ Glucose + Fructose
If the equilibrium constant $\left(K_{C}\right)$ is 2×10^{13} at 300 K , the value of $\Delta_{\mathrm{r}} G^{\ominus}$ at the same temperature will be
[NEET (Sept.) 2020]
(a) $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$
(b) $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(3 \times 10^{13}\right)$
(c) $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(4 \times 10^{13}\right)$
(d) $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$

Ans. (d)
Sucrose $+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$ Glucose + Fructose For this equilibrium,
$\Delta_{r} G^{\ominus}=-R T \ln K_{C}$
Given, $K_{C}=2 \times 10^{13}$ and $T=300 \mathrm{~K}$
$\Rightarrow \Delta_{\mathrm{r}} G^{\ominus}=-\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \times(300 \mathrm{~K}) \times$ $\ln \left(2 \times 10^{13}\right)$

45 For the reaction, $2 \mathrm{Cl}(\mathrm{g}) \longrightarrow \mathrm{Cl}_{2}(\mathrm{~g})$, the correct option is
[NEET (Sep.) 2020]
(a) $\Delta_{r} H>0$ and $\Delta_{r} S<0$
(b) $\Delta_{r} H<0$ and $\Delta_{r} S>0$
(c) $\Delta_{r} H<0$ and $\Delta_{r} S<0$
(d) $\Delta_{r} H>0$ and $\Delta_{r} S>0$

Ans. (c)
In this reaction, combination of two Cl atoms takes place to give more stable Cl_{2} molecule. So, the reaction is exothermic, i.e, $\Delta_{r} H<0$.
Here, $\Delta n_{g}=1-2=-1$
So, entropy change of the reaction will be, $\Delta_{\mathrm{r}} \mathrm{S}<0$.

46 Reversible expansion of an ideal gas under isothermal and adiabatic conditions are as shown in the figure.
[NEET (Odisha) 2019]

$A B \rightarrow$ Isothermal expansion
AC \rightarrow Adiabatic expansion

Which of the following option is not correct?
(a) $\Delta S_{\text {isothermal }}>\Delta S_{\text {adiabatic }}$
(b) $T_{A}=T_{B}$
(c) $W_{\text {isothermal }}>W_{\text {adiabatic }}$
(d) $T_{C}>T_{A}$

Ans. (d)
From first law of thermodynamics,

$$
\Delta U=q+W
$$

In adiabatic expansion, $q=0$

$$
\therefore \quad \Delta U=W
$$

During expansion of a gas w is negative i.e $w<0$ or $\Delta U<0$.

We know that, $\Delta U=n C_{V} \Delta T$

$$
\begin{array}{lrl}
\therefore & n C_{V} \Delta T & <0 \\
\text { or } & \Delta T & <0 \\
\therefore & T_{C}-T_{A} & <0 \\
\text { or } & T_{C} & <T_{A}
\end{array}
$$

Thus, option (d) is incorrect while the remaining options are correct.

47 For an ideal solution, the correct option is [NEET (National) 2019]
(a) $\Delta_{\text {mix }} V \neq 0$ at constant T and p
(b) $\Delta_{\text {mix }} H=0$ at constant T and p
(c) $\Delta_{\text {mix }} G=0$ at constant T and p
(d) $\Delta_{\text {mix }} S=0$ at constant T and p

Ans. (b)
Ideal solutions are those which obey Raoult's law over all concentration ranges at a given temperature, e.g. benzene-toluene, n-hexane-n-heptane, etc.
For an ideal solution,

$$
\begin{aligned}
& \Delta V_{\text {mix }}=0, \Delta H_{\text {mix }}=0 \\
& \Delta G_{\text {mix }}<0, \Delta S_{\text {mix }}>0
\end{aligned}
$$

Hence, option (b) is correct.
48 In which case change in entropy is negative?
[NEET (National) 2019]
(a) Expansion of a gas at constant temperature
(b) Sublimation of solid to gas
(c) $2 \mathrm{H}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})$
(d) Evaporation of water

Ans. (c)
The explanation of given statements are :
(a) Entropy is positive in case of expansion of a gas at constant temperature. It is because during expansion of gas volume increases and hence randomness increases.
(b) Entropy is positive in case of sublimation of solid to gas as gas is much disordered than a solid.
(c) Entropy is negative in case of $2 \mathrm{H}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})$ as the number of moles of gaseous reactants are more than that of gaseous products.
(d) Entropy is positive in case of evaporation of water as gas is much disordered than a liquid. Hence, option (c) is correct.
$\overline{49}$ For a given reaction, $\Delta H=35.5 \mathrm{~kJ}$ mol^{-1} and $\Delta S=83.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The reaction is spontaneous at : (Assume that ΔH and ΔS do not vary with temperature) [NEET 2017]
(a) $T<425 \mathrm{~K}$
(b) $T>425 \mathrm{~K}$
(c) all temperatures
(d) $T>298 \mathrm{~K}$

Ans. (b)
According to Gibbs-Helmholtz equation, Gibbs energy $(\Delta G)=\Delta H-T \Delta S$

$$
\text { Where, } \begin{aligned}
\Delta H & =\text { Enthalpy change } \\
\Delta S & =\text { Entropy change } \\
T & =\text { Temperature }
\end{aligned}
$$

For a reaction to be spontaneous

$$
\Delta G<0
$$

\therefore Gibbs-Helmholtz equation becomes,

$$
\begin{aligned}
& \Delta G=\Delta H-T \Delta S<0 \\
& \text { or, } \quad \Delta H<T \Delta S \\
& \text { or, } \quad T>\frac{\Delta H}{\Delta S}=\frac{35.5 \mathrm{~kJ} \mathrm{~mol}^{-1}}{83.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}} \\
&= \frac{35.5 \times 1000}{83.6}=425 \mathrm{~K} \\
& T>425 \mathrm{~K}
\end{aligned}
$$

50 The correct thermodynamic conditions for the spontaneous reaction at all temperatures is
[NEET 2016, Phase I]
(a) $\Delta H>0$ and $\Delta S<0$
(b) $\Delta H<0$ and $\Delta S>0$
(c) $\Delta H<0$ and $\Delta S<0$
(d) $\Delta H<0$ and $\Delta S=0$

Ans. (b,d)
We have the Gibbs Helmholtz reaction for spontaneity as

$$
\Delta G=\Delta H-T \Delta S
$$

For reaction to be spontaneous, ΔG must be negative.
For this, ΔH should be negative and ΔS should be positive.

$$
\begin{array}{ll}
\therefore & \Delta H<0 \\
\text { and } & \Delta S>0 .
\end{array}
$$

and also $\Delta S=0$ shows ΔG a negative quantity.

51 For a sample of perfect gas when its pressure is changed isothermally from p_{i} to p_{f}, the entropy change is given by
[NEET 2016, Phase II]
(a) $\Delta S=n R \ln \left(\frac{p_{f}}{p_{i}}\right)$
(b) $\Delta S=n R \ln \left(\frac{p_{i}}{p_{f}}\right)$
(c) $\Delta S=n R T \ln \left(\frac{p_{f}}{p_{i}}\right)$
(d) $\Delta S=R T \ln \left(\frac{p_{i}}{p_{f}}\right)$

Ans. (b)
Entropy change is given as,

$$
\Delta S=n C_{p} \ln \frac{T_{f}}{T_{i}}+n R \ln \frac{p_{i}}{p_{f}}
$$

For isothermal process, $T_{i}=T_{f}$

$$
\therefore \quad n C_{p} \ln \frac{T_{f}}{T_{i}}=n C_{p} \ln \frac{T_{i}}{T_{i}}=0 \quad[\ln 1=0]
$$

From Eq. (i)

$$
\Delta S=n R \ln \frac{p_{i}}{p_{f}}
$$

52 Which of the following statements is correct for a reversible process in a state of equilibrium?
[CBSE AIPMT 2015]
(a) $\Delta G=-2.30 R T \log K$
(b) $\Delta G=2.30 R T \log K$
(c) $\Delta G^{\circ}=-2.30 R T \log K$
(d) $\Delta G^{\circ}=2.30 R T \log K$

Ans. (a)
Mathematical expression of the thermodynamic equilibrium is

$$
\Delta G=\Delta G^{\circ}+2.303 R T \log Q
$$

At equilibrium when $\Delta G=0$ and $Q=K$ then $\Delta G=\Delta G^{\circ}+2.303 R T \log K=0$

$$
\Delta G^{\circ}=-2.303 R T \log K
$$

53 Which of the following statements is correct for the spontaneous absorption of a gas?
[CBSE AIPMT 2014]
(a) ΔS is negative and therefore, ΔH should be highly positive
(b) ΔS is negative and therefore, ΔH should be highly negative
(c) ΔS is positive and therefore, ΔH should be negative
(d) ΔS is positive and therefore, ΔH should also be highly positive

Ans. (b)
ΔS [change in entropy] and ΔH [change in enthalpy] are related by the equation $\Delta G=\Delta H-T \Delta S$
[Here, $\Delta G=$ change in Gibbs free energy]
For adsorption of a gas, ΔS is negative because randomness decreases. Thus, in order to make ΔG negative [for spontaneous reaction], ΔH must be highly negative. Hence for the adsorption of a gas, if ΔS is negative, therefore, ΔH should be highly negative.

54 For the reaction,

$$
\mathrm{X}_{2} \mathrm{O}_{4}(\mathrm{I}) \longrightarrow 2 \mathrm{XO}_{2}(\mathrm{~g}),
$$

$\Delta U=2.1 \mathrm{kcal}$,
$\Delta S=20 \mathrm{cal} \mathrm{K}^{-1}$ at 300 K .
Hence, ΔG is [CBSE AIPMT 2014]
(a) 2.7 kcal
(b) -2.7 kcal
(c) 9.3 kcal
(d) -9.3 kcal

Ans. (b)
The change in Gibbs free energy is given by

$$
\Delta G=\Delta H-T \Delta S
$$

where, $\Delta H=$ change enthalpy of the reaction
$\Delta S=$ change entropy of the reaction
Thus, in order to determine ΔG, the values of ΔH must be known. The value of ΔH can be calculated by using equation

$$
\begin{equation*}
\Delta H=\Delta U+\Delta n_{g} R T \tag{i}
\end{equation*}
$$

where, $\Delta U=$ change in internal energy using
$\Delta n_{g}=$ number of moles of gaseous products - number of moles of gaseous reactants

$$
=2-0=2
$$

$R=$ gas constant $=2 \mathrm{cal}$
given, $\Delta U=2.1 \mathrm{kcal}$

$$
\begin{aligned}
& =2.1 \times 10^{3} \mathrm{cal} \\
& \quad\left[\because 1 \mathrm{kcal}=10^{3} \mathrm{cal}\right]
\end{aligned}
$$

By putting the values in eq. (i) we get,

$$
\begin{array}{rlrl}
\therefore & \Delta H & =\left(2.1 \times 10^{3}\right)+(2 \times 2 \times 300) \\
& & & =3300 \mathrm{cal} \\
& \text { Hence, } & \Delta G & =\Delta H-T \Delta S \\
\Rightarrow & \Delta G & =(3300)-(300 \times 20) \\
& & \Delta G & =-2700 \mathrm{cal} \\
& \therefore & \Delta G & =-2.7 \mathrm{kcal}
\end{array}
$$

55 In which of the following reactions, standard reaction entropy changes $\left(\Delta S^{\circ}\right)$ is positive and standard Gibbs energy change (ΔG°) decreases sharply with increasing temperature? [CBSE AIPMT 2012]
(a) C(graphite) $+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{g})$
(b) $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$
(c) $\mathrm{Mg}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{MgO}(\mathrm{s})$
(d) $\frac{1}{2} \mathrm{C}($ graphite $)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow{ }_{\frac{1}{2}}^{1} \mathrm{CO}_{2}(\mathrm{~g})$

Ans. (a)
Among the given reactions only in the case of

$$
\mathrm{C} \text { (graphite) }+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{~g})
$$

entropy increases because randomness (disorder) increases. Thus, standard entropy change (ΔS°) is positive. Moreover, it is a combustion reaction and all the combustion reactions are generally exothermic, i.e. $\Delta H^{\circ}=-$ ve We know that,

$$
\begin{aligned}
& \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\
& \Delta G^{\circ}=-\mathrm{ve}-T(+\mathrm{ve})
\end{aligned}
$$

Thus, as the temperature increases, the value of ΔG° decreases.

56 The enthalpy of fusion of water is $1.435 \mathrm{kcal} / \mathrm{mol}$. The molar entropy change for the melting of ice at $0^{\circ} \mathrm{C}$ is
[CBSE AIPMT 2012]
(a) $10.52 \mathrm{cal} / \mathrm{mol} \mathrm{K}$
(b) $21.04 \mathrm{cal} / \mathrm{mol} \mathrm{K}$
(c) $5.260 \mathrm{cal} / \mathrm{mol} \mathrm{K}$
(d) $0.526 \mathrm{cal} / \mathrm{mol} \mathrm{K}$

Ans. (c)
Molar entropy change for the melting of ice,

$$
\begin{aligned}
\Delta S_{\text {melt }} & =\frac{\Delta H_{\text {fusion }}}{T}=\frac{1.435 \mathrm{kcal} / \mathrm{mol}}{(0+273) \mathrm{K}} \\
& =5.26 \times 10^{-3} \mathrm{kcal} / \mathrm{mol} \mathrm{~K} \\
& =5.26 \mathrm{cal} / \mathrm{mol} \mathrm{~K}
\end{aligned}
$$

57 If the enthalpy change for the transition of liquid water to steam is $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $27^{\circ} \mathrm{C}$, the entropy change for the process would be
[CBSE AIPMT 2011]
(a) $1.0 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(b) $0.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(c) $100 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(d) $10 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Ans. (c)

$$
\begin{aligned}
& \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\
& \text { Given, } \quad \Delta H_{\text {vap. }}=30 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& T=27+273=300 \mathrm{k} \\
& \Delta G^{\circ}=0 \text { at equilibrium, } \\
& \Delta S_{\text {vap }}= \frac{\Delta H_{\text {vap }}}{T}=\frac{30 \times 10^{3} \mathrm{Jmol}^{-1}}{300 \mathrm{~K}} \\
&=100 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

58 The values of ΔH and ΔS for the reaction,
$\mathrm{C}_{\text {(graphite) }}+\mathrm{CO}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}(\mathrm{g})$ are 170 kJ and $170 \mathrm{JK}^{-1}$, respectively. This reaction will be spontaneous at
[CBSE AIPMT 2009]
(a) 710 K
(b) 910 K
(c) 1110 K
(d) 510 K

Ans. (c)

$$
\text { Given, } \begin{aligned}
\Delta H & =170 \mathrm{~kJ}=170 \times 10^{3} \mathrm{~J} \\
\Delta \mathrm{~S} & =170 \mathrm{JK} \mathrm{~K}^{-1} ; \mathrm{T}=? \\
\Delta G & =\Delta H-\mathrm{T} \Delta \mathrm{~S}
\end{aligned}
$$

For spontaneous reaction,

$$
\begin{array}{ll}
& \Delta G<0 \\
\Rightarrow & 0<170 \times 10^{3}-T \times 170 ; T>1000 \\
\therefore & T=1110 \mathrm{~K}
\end{array}
$$

59 For the gas phase reaction,

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

which of the following conditions are correct?
[CBSE AIPMT 2008]
(a) $\Delta H=0$ and $\Delta S<0$
(b) $\Delta H>0$ and $\Delta S>0$
(c) $\Delta H<0$ and $\Delta S<0$
(d) $\Delta H>0$ and $\Delta S<0$

Ans. (b)
From enthalpy equation,

$$
\Delta H=\Delta E+n_{g} R T
$$

For the reaction,

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

$\Delta n_{g}=$ product mole - reactant mole
$\Delta n=2-1=1$
Thus, the value of ΔH is positive or >0.

$$
\Delta G=\Delta H-T \Delta S
$$

For a spontaneous reaction, ΔG must be negative. Since in this reaction ΔH is positive, so for the negative value of ΔG, ΔS must be positive or >0.
Hence, $\quad \Delta H>0, \Delta S>0$
60 The enthalpy and entropy change for the reaction,

$$
\mathrm{Br}_{2}(\mathrm{I})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{BrCl}(\mathrm{~g})
$$

are $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $105 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. The temperature at which the reaction will be in equilibrium is
[CBSE AIPMT 2006]
(a) 285.7 K
(b) 273 K
(c) 450 K
(d) 300 K

Ans. (a)
At equilibrium Gibbs free energy change (ΔG) is equal to zero.

$$
\Delta G=\Delta H-T \Delta S
$$

$$
\begin{aligned}
& 0=30 \times 10^{3}\left(\mathrm{~J} \mathrm{~mol}^{-1}\right) \\
&-T \times 105\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\
& \therefore \quad T=\frac{30 \times 10^{3}}{105} \mathrm{~K}=285.71 \mathrm{~K}
\end{aligned}
$$

61 Identify the correct statement for change of Gibbs free energy for a $\operatorname{system}\left(\Delta G_{\text {system }}\right)$ at constant temperature and pressure.
[CBSE AIPMT 2006]
(a) If $\Delta G_{\text {system }}>0$, the process is spontaneous
(b) If $\Delta G_{\text {system }}=0$, the system has attained equilibrium
(c) If $\Delta G_{\text {system }}=0$, the system is still moving in a particular direction
(d) If $\Delta G_{\text {system }}<0$, the process is not spontaneous
Ans. (b)
If the Gibbs free energy for a system ($\Delta G_{\text {system }}$) is equal to zero, then system is present in equilibrium at a constant temperature and pressure.

$$
\begin{aligned}
& \Delta G=\Delta_{r} G^{0}+R T \ln K ; \Delta G=0 \\
& \Delta_{r} G^{0}=-R T \ln K \\
& K=\text { equilibrium constant } \\
& \text { If } \Delta G_{\text {system }}<0, \text { then the process is } \\
& \text { spontaneous }
\end{aligned}
$$

62 Which of the following pairs of a chemical reaction is certain to result in a spontaneous reaction?
[CBSE AIPMT 2005]
(a) Exothermic and decreasing disorder
(b) Endothermic and increasing disorder
(c) Exothermic and increasing disorder
(d) Endothermic and decreasing disorder

Ans. (c)
If reaction is exothermic, therefore ΔH is negative and on increasing disorder, ΔS is positive thus, at these condition, ΔG is negative according to following equation.

$$
\Delta G=\Delta H-T \Delta S
$$

$\Delta G=$ negative, and for spontaneous reaction ΔG must be negative.

63 A reaction occurs spontaneously if
[CBSE AIPMT 2005]
(a) $T \Delta S<\Delta H$ and both ΔH and ΔS are $+v e$
(b) $T \Delta S>\Delta H$ and both ΔH and ΔS are $+v e$
(c) $T \Delta S=\Delta H$ and both ΔH and ΔS are $+v e$
(d) $T \Delta S>\Delta H$ and ΔH is $+v e$ and ΔS is -ve

Ans. (b)
The spontaneity of a reaction is based upon the negative value of ΔG and ΔG is based upon $T, \Delta S$ and ΔH according to
following equation (Gibbs-Helmholtz equation)

$$
\Delta G=\Delta H-T \Delta S
$$

If the magnitude of $\Delta H-T \Delta S$ is negative, then the reaction is spontaneous. when $T \Delta S>\Delta H$ or we can say that ΔH and ΔS are positive, then ΔG is negative.

64 Considering entropy (S) as a thermodynamic parameter, the criterion for the spontaneity of any process is
[CBSE AIPMT 2004]
(a) $\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}>0$
(b) $\Delta S_{\text {system }}-\Delta S_{\text {surrounding }}>0$
(c) $\Delta S_{\text {system }}>0$
(d) $\Delta S_{\text {surrounding }}>0$

Ans. (a)
For spontaneous process, ΔS must be positive. In reversible process

$$
\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}=0
$$

Hence, system is present in equilibrium. (i.e. it is not spontaneous process) While in irreversible process

$$
\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}>0
$$

Hence, in the process ΔS is positive.
65 Standard enthalpy and standard entropy changes for the oxidation of ammonia at 298 K are $-382.64 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-145.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. Standard Gibbs energy change for the same reaction at 298 K is
[CBSE AIPMT 2004]
(a) $-221.1 \mathrm{kJmol}^{-1}$
(b) $-339.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $-439.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $-523.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. (b)

$$
\begin{equation*}
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \tag{i}
\end{equation*}
$$

Given that, $\Delta H^{\circ}=-382.64 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
\Delta S^{\circ} & =-145.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =-145.6 \times 10^{-3} \mathrm{~kJ} \mathrm{~K}^{-1} \\
T & =298 \mathrm{~K}
\end{aligned}
$$

On putting the given values in eq. (i) we get,

$$
\text { or } \quad \begin{aligned}
\Delta G^{\circ}= & -382.64 \\
& -\left[298 \times\left(-145.6 \times 10^{-3}\right)\right] \\
= & -339.3 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

66 What is the entropy change (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$) when one mole of ice is converted into water at $0^{\circ} \mathrm{C}$? (The enthalpy change for the conversion of ice to liquid water is $6.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $0^{\circ} \mathrm{C}$)
[CBSE AIPMT 2003]
(a) $2.198 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(b) $21.98 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(c) $20.13 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(d) $2.013 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Ans. (b)
Given, $\Delta H_{f}=6.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
& T=0+273=273 \mathrm{~K} \\
& \Delta S=\frac{\Delta H_{f}}{T}=\frac{6.0}{273}=0.02198 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \quad\left(T=0^{\circ} \mathrm{C}+273=273 \mathrm{~K}\right) \\
&=0.02198 \times 1000 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\
&=21.98 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

67 The densities of graphite and diamond at 298 K are 2.25 and 3.31 $\mathrm{g} \mathrm{cm}^{-3}$, respectively. If the standard free energy difference $\left(\Delta G^{\circ}\right)$ is equal to $1895 \mathrm{~J} \mathrm{~mol}^{-1}$, the pressure at which graphite will be transformed into diamond at 298 K is
[CBSE AIPMT 2003]
(a) $9.92 \times 10^{6} \mathrm{pa}$
(b) $9.92 \times 10^{5} \mathrm{pa}$
(c) $9.92 \times 10^{8} \mathrm{pa}$
(d) $9.92 \times 10^{7} \mathrm{~Pa}$

Ans. (c)
Volume of graphite $=\frac{\text { Mass }}{\text { Density }}=\frac{12}{2.25}$
Volume of diamond $=\frac{12}{3.31}$
Change in volume,

$$
\begin{aligned}
\Delta V & =\left(\frac{12}{3.31}-\frac{12}{2.25}\right) \times 10^{-3} \mathrm{~L} \\
& =-1.91 \times 10^{-3} \mathrm{~L} \\
\Delta G^{\circ} & =\text { work done }=-p \Delta V \\
p & =-\frac{\Delta G^{\circ}}{\Delta V} \\
& =\frac{1895 \mathrm{~J} \mathrm{~mol}^{-1}}{1.91 \times 10^{-3} \times 101.3} \\
& =9794 \mathrm{~atm}
\end{aligned}
$$

$$
\left[\because 1 \mathrm{~atm}=10^{5} \times 1.013 \mathrm{~Pa}\right]
$$

$$
=9.92 \times 10^{8} \mathrm{~Pa}
$$

682 moles of an ideal gas at $27^{\circ} \mathrm{C}$ temperature is expanded reversibly from $2 L$ to $20 L$. Find entropy change ($R=2 \mathrm{cal} / \mathrm{mol} \mathrm{K}$).
[CBSE AIPMT 2002]
(a) 92.1
(b) 0
(c) 4
(d) 9.2

Ans. (d)
$\Delta S($ entropy change $)=2.303 n R \log _{10} \frac{V_{2}}{V_{1}}$

$$
\begin{aligned}
& =2.303 \times 2 \times 2 \times \log _{10} \frac{20}{2} \\
& =2.303 \times 2 \times 2 \times 1=9.212 \mathrm{cal}
\end{aligned}
$$

69 Unit of entropy is
[CBSE AIPMT 2002]
(a) $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(b) $\mathrm{J} \mathrm{mol}^{-1}$
(c) $J^{-1} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(d) $\mathrm{JK} \mathrm{mol}^{-1}$

Ans. (a)
Entropy change equal to change in heat per degree. $\quad \Delta S=\frac{q}{T}$
$q=$ required heat per mol
$T=$ constant absolute temperature
Thus, unit of entropy is $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$70 \mathrm{PbO}_{2} \rightarrow \mathrm{PbO}, \Delta \mathrm{G}_{298}<0$
$\mathrm{SnO}_{2} \rightarrow \mathrm{SnO}, \Delta \mathrm{G}_{298}>0$
Most probable oxidation state of Pb and Sn will be
(a) $\mathrm{Pb}^{4+}, \mathrm{Sn}^{4+} \quad$ [CBSE AIPMT 2001]
(b) $\mathrm{Pb}^{4+}, \mathrm{Sn}^{2+}$
(c) $\mathrm{Pb}^{2+}, \mathrm{Sn}^{2+}$
(d) $\mathrm{Pb}^{2+}, \mathrm{Sn}^{4+}$

Ans. (d)

$$
\stackrel{+4}{\mathrm{~Pb}} \mathrm{O}_{2} \rightarrow \stackrel{+2}{\mathrm{~Pb}} \mathrm{O}, \Delta \mathrm{G}_{298}<0
$$

For this reaction ΔG is negative, hence Pb^{2+} is more stable than Pb^{4+}.

$$
\stackrel{+4}{\mathrm{~S}} \mathrm{HO}_{2} \rightarrow \stackrel{+2}{\mathrm{~S}} \mathrm{O} \mathrm{O}_{1} \quad \Delta G_{298}>0
$$

For this reaction ΔG is positive, hence Sn^{4+} is more stable than Sn^{2+} because for spontaneous change ΔG must be negative.

71 The factor of ΔG values is important in metallurgy. The ΔG values for the following reactions at $800^{\circ} \mathrm{C}$ are given as

$$
\begin{aligned}
\mathrm{S}_{2}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g}), \\
\Delta G=-544 \mathrm{~kJ}
\end{aligned}
$$

$2 \mathrm{Zn}(\mathrm{s})+\mathrm{S}_{2}(\mathrm{~s}) \longrightarrow 2 \mathrm{ZnS}(\mathrm{s})$,
$\Delta G=-293 \mathrm{~kJ}$
$2 \mathrm{Zn}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{ZnO}(\mathrm{s})$,
$\Delta G=-480 \mathrm{~kJ}$
The ΔG for the reaction,

$$
\begin{aligned}
2 \mathrm{ZnS}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow & 2 \mathrm{ZnO}(\mathrm{~s}) \\
+ & 2 \mathrm{SO}_{2}(\mathrm{~g})
\end{aligned}
$$

will be
(a) -357 kJ
(b) -731 kJ
(c) -773 kJ
(d) -229 kJ

Ans. (b)
ΔG of formation of different substances are as

$$
\begin{aligned}
& 2 \mathrm{SO}_{2}=-544 \mathrm{~kJ} \\
& 2 \mathrm{ZnS}=-293 \mathrm{~kJ} \\
& 2 \mathrm{ZnO}=-480 \mathrm{~kJ}
\end{aligned}
$$

For the reaction,

$$
\begin{aligned}
& 2 \mathrm{ZnS}+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{ZnO}(s)+2 \mathrm{SO}_{2}(g) \\
& \Delta G=\left[\left(\Delta G_{\text {(products) }}-\Delta G_{(\text {reactants) }}\right]\right. \\
&=[(-480)+(-544)-(-293)] \\
&=-1024+293 \\
&=-731 \mathrm{~kJ}
\end{aligned}
$$

$\overline{72}$ The entropy change in the fusion of one mole of a solid melting at $27^{\circ} \mathrm{C}$ (latent heat of fusion is $2930 \mathrm{~J} \mathrm{~mol}^{-1}$) is
[CBSE AIPMT 2000]
(a) $9.77 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(b) $10.73 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(c) $2930 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(d) $108.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Ans. (a)

$$
\begin{aligned}
& \text { Entropy, } \Delta S_{f}=\frac{\Delta H_{f}}{T_{f}} \\
&=\frac{\text { Fusion enthalpy }}{\text { Temperature }} \\
& \begin{aligned}
\Delta S_{f} & =\frac{2930 \mathrm{~J} \mathrm{~mol}^{-1}}{300 \mathrm{~K}} \\
& =9.77 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
\end{aligned}
$$

73 Identify the correct statement regarding entropy.
[CBSE AIPMT 1998]
(a) At absolute zero temperature, entropy of a perfectly crystalline substance is taken to be zero
(b) At absolute zero temperature, the entropy of a perfectly crystalline substance is positive
(c) At absolute zero temperature, the entropy of all crystalline substances is to be zero
(d) At $0^{\circ} \mathrm{C}$, the entropy of a perfectly crystalline substance is taken to be zero
Ans. (a)
"At absolute zero temperature, entropy of a perfectly crystalline substance is taken to be zero." It is called third law of thermodynamics.

74 Given the following entropy values (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$) at 298 K and 1 atm : $\mathrm{H}_{2}(\mathrm{~g}): 130.6, \mathrm{Cl}_{2}(\mathrm{~g}): 223.0, \mathrm{HCl}(\mathrm{g}):$ 186.7. The entropy change (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$) for the reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\longrightarrow} 2 \mathrm{HCl}(\mathrm{~g}) \text {, is }
$$

[CBSE AIPMT 1996]
(a) +540.3
(b) +727.0
(c) -166.9
(d) +19.8

Ans. (d)

$$
\begin{aligned}
& \quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{~g}) \\
& \Delta_{r} S \\
& =\Sigma S_{m}^{\circ}(\mathrm{P})-\Sigma \mathrm{S}_{m}^{\circ}(R) \\
& \Delta_{r} S^{\circ}= \\
& =2 \times S_{m}^{\circ}(\mathrm{HCl})-\left[S_{m}^{\circ}\left(\mathrm{Cl}_{2}\right)\right. \\
& \left.\quad+S_{m}^{\circ}\left(\mathrm{H}_{2}\right)\right] \\
& \\
& \quad=(2 \times 186.7)-(223+130.6) \\
& \quad=373.4-353.6 \\
& \\
& =+19.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

75 According to the third law of thermodynamics which one of the following quantities for a perfectly crystalline solid is zero at absolute zero?
[CBSE AIPMT 1996]
(a) Free energy
(b) Entropy
(c) Enthalpy
(d) Internal energy

Ans. (b)
Entropy is the degree of randomness or disorder of the system. When the temperature of the system is zero kelvin, then all the motion of molecules ceases. According to third law of thermodynamics "At absolute zero the entropy of a perfectly crystalline substance is taken as zero."

76 The correct relationship between free energy and equilibrium constant K of a reaction is
[CBSE AIPMT 1996]
(a) $\Delta G^{\circ}=-R T \ln K$
(b) $\Delta G=R T \ln K$
(c) $\Delta G^{\circ}=R T \operatorname{In} K$
(d) $\Delta G=-R T \operatorname{In} K$

Ans. (a)
The Gibbs free energy of a reaction, $\Delta_{r} G$ is related to the composition of the reaction mixture and the standard reaction Gibbs free energy $\Delta_{r} G^{\circ}$ as

$$
\Delta_{r} G=\Delta_{r} G^{\circ}+R T \ln 0
$$

where, $\mathrm{Q}=$ reaction quotient

At equilibrium $Q=K$ and $\Delta_{r} G=0$.
Therefore, the above reaction becomes

$$
\begin{aligned}
0 & =\Delta_{r} G^{\circ}+R T \ln K \\
\Delta_{r} G^{\circ} & =-R T \ln K \\
\text { or } \quad \Delta_{r} G^{\circ} & =-2.303 R T \log K \\
K & =\text { equilibrium constant }
\end{aligned}
$$

77 Standard Gibb's free energy change for the isomerisation reaction cis-2-pentene \rightleftharpoons trans-2-pent ene is $-3.67 \mathrm{~kJ} / \mathrm{mol}$ at 400 K . If more trans-2-pentene is added to the reaction vessel, then
[CBSE AIPMT 1995]
(a) more cis-2-pentene is formed
(b) equilibrium remains unaffected
(c) additional trans-2-pentene is formed
(d) equilibrium is shifted in forward direction
Ans. (a)

According to Le-Chatelier's principle, when we increase the concentration of trans-2-pentene, then the reaction shifts in backward direction and hence, the concentration of cis-2-pentene increase to maintain the equilibrium constant K constant at given temperature.

78 Consider the following reaction occurring in an automobile

$$
\begin{aligned}
& 2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \\
& 16 \mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The sign of $\Delta H, \Delta S$ and ΔG would be [CBSE AIPMT 1994]
(a),,+-+ (b),,-+-
(c),,-++ (d
(d),,++-

Ans. (b)
The given reaction is combustion reaction, so it takes place by evolution of heat and hence, the sign of
$\Delta H=$ negative and there is a increase in
the number of moles of gaseous products, so entropy also increases and hence, $\Delta S=$ positive.
Thus,

$$
\begin{aligned}
\Delta G & =\Delta H-T \Delta S=-\mathrm{ve}-T(+\mathrm{ve}) \\
& =- \text { ve at any temperature }
\end{aligned}
$$

79 A chemical reaction will be spontaneous if it is accompanied by a decrease in [CBSE AIPMT 1994]
(a) entropy of the system
(b) enthalpy of the system
(c) internal energy of the system
(d) free energy of the system

Ans. (d)
Gibbs free energy of a system will decide the spontaneity of a process.
If ΔG is negative, then the process is spontaneous.

