14 Respiration in Plants

TOPIC 1 Glycolysis

- O1 Conversion of glucose to glucose-6-phosphate, the first irreversible reaction of glycolysis, is catalysed by [NEET (National) 2019] (a) hexokinase (b) enolase
 - (c)phosphofructokinase (d)aldolase

Ans. (a)

Conversion of glucose to glucose-6-phosphate during glycolysis is catalysed by the enzyme hexokinase. During this step, glucose is phosphorylated to glucose-6-phosphate by ATP. It is the first step of activation phase of glycolysis.

02 Which of the following biomolecules is common to respiration-mediated breakdown of fats, carbohydrates and proteins? **[NEET 2016, Phase II]**

(a) Glucose-6-phosphate

(b) Fructose 1,6-bisphosphate

- (c) Pyruvic acid
- (d) Acetyl Co-A

Ans. (d)

Carbohydrates, fats and proteins, all can be used as a substrate in cellular respiration. All of them first get converted to acetyl Co-A to enter into Krebs' cycle of aerobic cellular respiration. Thus, it is the common factor of respiration entering Krebs' cycle after breakdown of carbohydrates, fats and proteins.

03 In glycolysis, during oxidation electrons are removed by [CBSE AIPMT 2004] (a) ATP
(b) glyceraldehyde-3-phosphate
(c) NAD⁺
(d) malagular gwygap

(d) molecular oxygen

Ans. (c)

When 3-phosphoglyceraldehyde is converted into 1,3 diphosphoglyceric acid, two electrons and two protons are released which are utilised to convert NAD⁺ to NADH and one H⁺. NAD⁺ + 2H⁺ + 2e⁻ \rightarrow NADH + H⁺.

04 In animal cells, the first stage of glucose breakdown is [CBSE AIPMT 1994]

(a) Krebs' cycle(b) glycolysis(c) oxidative phosphorylation(d) ETC

Ans. (b)

Glycolysis refers to the sequence of reactions by which glucose is degraded anaerobically into pyruvic acid inside cytoplasm. The net gain of molecules of ATP during glycolysis is 2.

05 End product of glycolysis is [CBSE AIPMT 1990]

(a) acetyl Co-A(b) pyruvic acid(c) glucose 1-phosphate(d) fructose 1-phosphate

Ans. (b)

During glycolysis one molecule of glucose is broken down into two molecules of pyruvic acid in the cytoplasm. Glycolysis is the common path of aerobic and anaerobic respiration.

06 EMP can produce a total of [CBSE AIPMT 1990] (a) 6 ATP (b) 8 ATP

(a)6 ATP	(b)8ATP
(c)24 ATP	(d)38 ATP

Ans. (b)

EMP (Embden-Meyerhof Paranas Pathway) refers to glycolysis, in which one molecule of glucose is broken down to two molecules of pyruvic acid. In this process there is a gain of 2NADH (2 × 3 ATP) and 2 ATP, i.e. total 8 ATP.

07 Incomplete oxidation of glucose into pyruvic acid with several intermediate steps is known as [CBSE AIPMT 1988]

(a) TCA-pathway(b) glycolysis(c) HMS-pathway(d) Krebs' cycle

Ans. (b)

Glycolysis is the sequence of enzyme mediated reactions by which glucose is degraded anaerobically into pyruvic acid in cell cytoplasm. The net gain of molecules of ATP during glycolysis is two.

TOPIC 2

Krebs Cycle and Electron Transport Chain

08 Which of the following statement is incorrect? **[NEET 2021]**

- (a) During aerobic respiration, role of oxygen is limited to the terminal stage
- (b) In ETC (Electron Transport Chain), one molecule of NADH + H $^+$ gives rise to 2 ATP molecules and one FADH₂ gives rise to 3 ATP molecules
- (c) ATP is synthesised through complex V
- (d) Oxidation-reduction reactions produce proton gradient in respiration

Ans. (b)

Oxidation of one molecule of NADH gives rise to 3 molecules of ATP and one molecule of FADH $_2$ produces 2 molecules of ATP.

NADH and FADH₂ are two different types of electron donors. They differ in the ways they feed electron during electron transport chain. NADH feeds its electrons into the electron transport chain at the beginning (Complex I). FADH₂ feeds into the electron transport chain at Complex II (at a lower energy level down the chain). The high energy electrons from NADH have sufficient energy to result in 3 ATP whereas the lower energy electrons in FADH₂ have energy for 2 ATP production.

09 Pyruvate dehydrogenase activity during aerobic respiration requires [NEET (Oct.) 2020]

	,
(a) calcium	(b) iron
(c)cobalt	(d) magnesium

Ans. (d)

Pyruvate dehydrogenase enzyme is involved in the conversion of pyruvate to acetyl Co-A, after the completion of glycolysis and before the start of Krebs' cycle. This enzyme is made up of decarboxylase, lipoic acid, transacetylase and Mg²⁺ ion. The reaction occur in following way Pyruvate+ NAD⁺ + Co-A $\xrightarrow{Pyruvate}_{dehydrogenase, Mg^{2+}}$

Acetyl Co-A + NADH + H^+ + CO_2 In this reaction Mg²⁺ acts as a cofactor.

10 The number of substrate level phosphorylation in one turn of citric acid cycle is

[NEET (Sep.) 2020]

(a)one (b)two (c)three (d)zero

Ans. (a)

The number of substrate level phosphorylation in one turn of citric acid cycle is 1. During Krebs' or citric acid cycle, succinyl-Co-A is acted upon by enzyme succinyl-Co-A synthetase to form succinate (a 4C compound). The reaction releases sufficient energy to form ATP (in plants) or GTP (in animals) by substrate-level phosphorylation. GTP can form ATP through a coupled reaction. Succinyl Co-A+GDP/ADP+H₃ PO₄ synthetase. Succinyl Co-A Succinate +Co-A+GTP/ATP.

11 Where is respiratory Electron Transport System (ETS) located in plants? [NEET (Odisha) 2019] (a) Mitochondrial matrix

- (b) Outer mitochondrial membrane
- (c) Inner mitochondrial membrane
- (d) Intermembrane space

Ans. (c)

Respiratory Electron Transport System (ETS) in plants is located in inner mitochondrial membrane. It serves as the site of oxidative phosphorylation through the action of ATP synthase.

12 Which one of these statements is incorrect? [NEET 2018]

- (a) Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
- (b) Glycolysis occurs in cytosol
- (c) Enzymes of TCA cycle are present in mitochondrial matrix
- (d) Oxidative phosphorylation takes place in outer mitochondrial membrane

Ans. (d)

Oxidative phosphorylation is the process of ATP formation due to the transfer of electrons from NADH or FADH₂ to oxygen molecule (O_2) by a series of electron carriers. This process occurs in the inner mitochondrial membrane because of its less permeability, presence of ETC proteins and ATP synthase.

The rest three statements are correct.

13 What is the role of NAD⁺ in cellular respiration? [NEET 2018]

- (a) It is a nucleotide source of ATP synthesis
- (b) It functions as an electron carrier
- (c) It functions as an enzyme
- (d) It is the final electron acceptor for anaerobic respiration

Ans. (b)

NAD⁺ functions as an **electron carrier** in cellular respiration. NAD is an oxidising agent which accept electrons and then transfer them to the Electron Transport System (ETS). As a result, 3ATP molecules are formed.

- 14 Which statement is wrong for Krebs' cycle? [NEET 2017]
 - (a) There are three points in the cycle where NAD⁺ is reduced to NADH + H⁺
 - (b) There is one point in the cycle where ${\rm FAD}^+$ is reduced to ${\rm FADH}_2$
 - (c) During conversion of succinyl Co-A to succinic acid, a molecule of GTP is synthesised
 - (d) The cycle starts with condensation of acetyl group (acetyl Co-A) with pyruvic acid to yield citric acid

Ans. (d)

Option(d) is incorrect, which can be corrected as

Krebs' cycle starts with the condensation of acetyl group with oxaloacetic acid and water to yield citric acid.

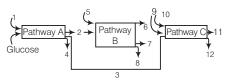
During conversion of succinic acid to fumaric acid FAD⁺ is reduced to FADH₂. During conversion of pyruvic acid to acetyl Co-A, isocitrate to oxalosuccinic acid and α -ketoglutaric acid to succinyl Co-A NAD⁺ is reduced to NADPH+H⁺.

15 Oxidative phosphorylation is [NEET 2016, Phase II]

- (a) formation of ATP by transfer of phosphate group from a substrate to ADP
- (b) oxidation of phosphate group in ATP
- (c) addition of phosphate group to ATP
- (d) formation of ATP by energy released from electrons removed during substrate oxidation

Ans. (a)

Oxidative phosphorylation is the process of formation of ATP from ADP and inorganic phosphate (P_i) in the presence of oxygen. It occurs mainly in the Electron Transport Chain (ETC) of cellular respiration.


16 Which of the metabolites is common to respiration mediated breakdown of fats, carbohydrates and proteins? **[NEET 2013]**

(a) Glucose-6-phosphate
(b) Fructose 1, 6-bisphosphate
(c) Pyruvic acid
(d) Acetyl Co-A

Ans. (d)

Acetyl Co-A is common to respiration mediated breakdown of fats, carbohydrates and proteins. Glucose and fructose are phosphorylated to give rise to glucose-6-phosphate by the activity of the enzyme hexokinase. Glucose-6-phosphate is then converted into fructose-6-phosphate and further to fructose 1-6-bisphosphate. Pyruvic acid is the end product of glycolysis.

17 The three boxes in this diagram represent the three major biosynthetic pathways in aerobic respiration. Arrows represent net reactants or products **[NEET 2013]**

Arrows numbered 4, 8 and 12 can all be (a) NADH (b) ATP

(c)H₂O (d)FAD⁺ or FADH₂

Ans. (b)

	colysis, pathway B is and pathway C is
oxidative phosp	
Arrow 1	$-$ ADP or NAD $^{+}$
Arrow 2	— Pyruvate
Arrow 3	— NADH
Arrow 4	- ATP
Arrow 5	$-$ ADP, NAD $^{\scriptscriptstyle +}$ or FAD
Arrow 6 and 7	$-$ FADH $_2$ and NADH
(either one can b	be 6 or 7)
Arrow 8	 – ATP or CO₂
Arrow 9 and 10 one can be 9 or 1	- 0 ₂ and ADP (either 0)
Arrow 11 and 12	 – H₂O and ATP
(either onecan b	e 11 or 12)

18 Aerobic respiratory pathway is appropriately termed

[CBSE AIPMT 2009]

(a) catabolic (b) parabolic (c) amphibolic (d) anabolic

Ans. (c)

An amphibolic pathway is a biochemical pathway that serves both anabolic and catabolic processes. An important example of an amphibolic pathway is the Krebs' cycle, which involves both the catabolism of carbohydrates and fatty acid and the synthesis of anabolic precursors for amino acid synthesis, eq, α -ketogluturate and oxalo acetate.

19 The chemiosmotic coupling hypothesis of oxidative phosphorylation proposes that Adenosine Triphosphate (ATP) is formed because

[CBSE AIPMT 2008]

- (a) high energy bonds are formed in mitochondrial proteins
- (b) ADP is pumped out of the matrix into the intermembrane space
- (c) a proton gradient forms across the inner membrane
- (d) there is a change in the permeability of the inner mitochondrial membrane toward Adenosine Diphosphate (ADP)

Ans. (c)

The production of ATP with the help of energy liberated during oxidation of reduced coenzymes and terminal oxidation is called oxidative phosphorylation. Peter Mitchell (1961) gave a hypothesis known as chemiosmotic hypothesis for ATP synthesis. According to this when electrons flow from dual proton, electron carrier to a non-hydrogen carrier the H⁺ are released and expelled into the intermembrane space and thus creates a proton gradient with higher concentration of H⁺ in the inter membranous space than the matrix. Due to the proton motive force the protons flow back and energy liberated during this back flow of protons activate ATPase present in F, head to synthesize ATP.

20 The overall goal of glycolysis, Krebs' cycle and the electron transport system is the formation of [CBSE AIPMT 2007] (a) ATP in small stepwise units (b) ATP in one large oxidation reaction (c) sugars

(d) nucleic acids

Ans. (a)

Glycolysis, Krebs' cycle and electron transport system are meant for ATP synthesis in different steps. ATP is the energy currency of cell.

21 All enzymes of TCA cycle are located in the mitochondrial matrix except one which is located in inner mitochondrial membranes in eukaryotes and in cytosol in prokaryotes. This enzyme is [CBSE AIPMT 2007]

> (a) lactate dehydrogenase (b) isocitrate dehvdrogenase (c) malate dehydrogenase (d) succinate dehydrogenase

Ans. (d)

Succinate dehvdrogenase enzyme is present on inner membrane of mitochondria and catalyses the oxidation of succinate to fumarate.

22 During which stage, in the complete oxidation of glucose are the greatest number of ATP molecules formed from ADP

[CBSE AIPMT 2005]

- (a) glycolysis (b) Krebs' cycle
- (c) conversion of pyruvic acid to acetyl Co-A
- (d) electron transport chain

Ans. (d)

The last step of aerobic respiration is the oxidation2 of reduced coenzymes, i.e., NADH, and FADH, by molecular oxygen through FAD, ubiquinone, cyt.-b, cyt.-c, cyt-c₁, cyt.-a and cyt.-a₂. By oxidation of 1 molecule of NADH, , 3 ATP molecules are produced and by oxidation of 1 molecule of FADH, 2ATP molecules are Produced.

In glycolysis 2 ATP molecules are produced from ADP.

Further 2NADH₂ produced, give $2 \times 3 = 6$ ATP, on oxidative phosphorylation. Similarly in Krebs' cycle 2 ATP molecules are produced. So the greatest number of ATP molecules are produced in the electron transport chain.

23 Chemiosmotic theory of ATP synthesis in the chloroplast and mitochondria is based on

[CBSE AIPMT 2005]

(a) membrane potential (b) accumulation of Na⁺ ions (c) accumulation of K⁺ ions (d) proton gradient

Ans. (d)

Chemiosmotic hypothesis for oxidative phosphorylation (ATP synthesis) was proposed by Peter Mitchell in 1961, for this he was awarded Nobel Prize in 1978. This theory is based on proton gradient.

24 Which one of the following concerns photophosphorylation? [CBSE AIPMT 2003]

(a) AMP + inorganic PO₄

Light energy ATP

(b) ADP + AMP \longrightarrow ATP (b) ADP + APT -(c) ADP + inorganic PO₄ Light energy ATP

(d) ADP + inorganic $PO_4 \longrightarrow ATP$

Ans. (c)

Phosphorylation refers to the process in which ATP is made when energy is used to bind another phosphate to ADP. Photophosphorvlation reactions are part of both respiration and photosynthesis.

25 In which one of the following do the two names refer to one and the same thing? [CBSE AIPMT 2003](a) Tricarboxylic acid cycle and urea

- cycle
- (b) Krebs' cycle and Calvin cycle

(c) Tricarboxylic acid cycle and citric acid cycle

(d) Citric acid cycle and Calvin cycle

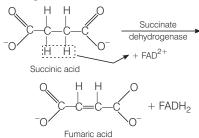
Ans. (c)

Tricarboxylic acid cycle is also known as citric acid cycle. This is an aerobic process, that takes place in the matrix of mitochondria. Kreb that discovered this cycle in 1937. So, this is also known as Krebs' cycle.

26 The mechanism of ATP formation both in chloroplast and mitochondria is explained by [CBSE AIPMT 1997]

(a) relay pump theory of Godlewski
(b) Munch's pressure/mass flow model
(c) chemiosmotic theory of Mitchell
(d) Cholondy-Went's model

Ans. (c)


In chemiosmotic- coupling hypothesis, outward pumping of protons across the inner chloroplast or mitochondrial membrane results in accumulation of protons between outer membrane and inner membrane. A proton gradient is thus established. As protons now flow back passively down the gradient, the proton motive force is utilised to synthesise ATP.

27 In Krebs' cycle FAD participates as electron acceptor during the conversion of **[CBSE AIPMT 1997]**

(a) succinyl Co-A to succinic acid
(b)α-ketoglutarate to succinyl Co-A
(c) succinic acid to fumaric acid
(d) fumaric acid to malic acid

Ans. (c)

Electrons and H-ions during oxidation of succinic acid to fumaric acid, are taken up by FAD which gets reduced to FADH₂.

28 Oxidative phosphorylation involves simultaneous oxidation and phosphorylation to finally form [CBSE AIPMT 1996]

(a) pyruvate (b) NADP (c) DPN (d) ATP

Ans. (d)

In oxidative phosphorylation ATP is formed as the electrons are transferred from NADH or FAD H_2 to O_2 by a series of electron carriers, located in the inner membrane of mitochondria.

29 Krebs' cycle occurs in [CBSE AIPMT 1996]

(a) mitochondria (b) cytoplasm (c) chloroplast (d) ribosomes

Ans. (a)

Krebs' cycle occurs inside the matrix of mitochondria. The cycle is also named as **citric acid cylce** or **tricarboxylic acid cycle**. It includes stepwise oxidative and cyclic degradation of activated acetate derived from pyruvic acid.

30 Which of the following is essential for conversion of pyruvic acid into acetyl Co-A? [CBSE AIPMT 1995]

	-
(a)LAA	(b)NAD+
(c)TPP	(d)All of these

Ans. (d)

The oxidative decarboxylation of pyruvate into acetyl Co-A involves the presence of atleast five essential co-factors and an enzyme complex. The co-factors involved are Mg ions, Thiamine Pyrophosphate (TPP), NAD⁺, Coenzyme-A (Co-A) and lipoic acid.

31 ATP is injected in cyanide poisoning because it is

[CBSE AIPMT 1994]

(a) necessary for cellular functions

- (b) necessary for Na $^{\scriptscriptstyle +}$ K $^{\scriptscriptstyle +}$ pump
- (c) Na⁺ K⁺ pump operates at the cell membranes
- (d) ATP breaks down cyanide

Ans. (a)

Cyanide is a deadly poison. It stops respiration by inhibiting electron flow from cyt.-b to cyt.- c_1 . ATP is the energy currency of cell is injected in cyanide poisoning because, it is necessary for cellular functions. **32** Out of 38 ATP molecules produced per glucose, 32 ATP molecules are formed from NADH / FADH₂ in

[CBSE AIPMT 1993]

(a) respiratory chain(b) Krebs' cycle(c) oxidative decarboxylation(d) EMP

Ans. (a)

Respiratory chain helps in forming 32 ATP molecules from NADH/FADH₂ molecules. In which Oxidative phosphorylation is the synthesis of energy rich ATP molecules with the help of energy liberated during oxidation of reduced coenzymes (NADH₂, FADH₂). produced in glycolysis and Krebs' cycle. A total of 10NADH₂ and 2FADH₂ molecules are formed in aerobic respiration. They help in formation of 32 or 34ATP molecules.

33 End product of citric acid/Krebs' cycle is [CBSE AIPMT 1993] (a) citric acid (b) lactic acid

(a) citric acid (b) lactic acid (c) pyruvic acid (d) $CO_2 + H_2O$

Ans. (d)

Krebs' cycle or citric acid cycle that takes place in the matrix of mitochondrion begins by linking acetyl Co-A to oxaloacetic acid forming citric acid. In the presence of various enzymes, cycle continues through the formation of various intermediates and release of CO_2 and H_2O as end-products.

34 Link between glycolysis, Krebs' cycle and β-oxidation of fatty acid or carbohydrate and fat metabolism is

[CBSE AIPMT 1992, 90]

(a) oxaloacetic acid (b) succinic acid (c) citric acid (d) acetyl Co-A

Ans. (d)

The pyruvic acid synthesised from glycolysis enters into mitochondria and undergoes oxidative decarboxylation to produce CO_2 and NADH₂.

The product combines with coenzyme-A to form acetyl Co-A. It is the connecting link between glycolysis, Krebs' cycle and fat oxidation.

35 Oxidative phosphorylation is production of **[CBSE AIPMT 1992]**

(a) ATP in photosynthesis(b) NADPH in photosynthesis(c) ATP in respiration(d) NADH in respiration

Ans. (c)

Oxidative phosphorylation is the synthesis of ATP from ADP and inorganic phosphate which occurs with the help of energy obtained from oxidation of reduced coenzymes formed in cellular respiration.

36 Terminal cytochrome of respiratory chain which donates electrons to oxygen is

[CBSE AIPMT 1992]

(a) cyt-b	(b)cyt-c
(c)cyt-a ₁	(d)cyt-a ₃

Ans. (d)

The ETS system contains various electron carriers such as cytochromes. The correct sequence of electron carrier/acceptor in ATP synthesis is cyt-b, cyt-c₁, cyt-c, cyt (a and $cyt - a_3$). Cyt-a, is the terminal cytochrome, it possess two copper centers, which help in transfer of electron to oxygen.

37 NADP⁺ is reduced to NADPH in [CBSE AIPMT 1988]

(a) HMP	(b) Calvin cycle
(c)glycolysis	(d)EMP

Ans. (a)

Pentose Phosphate Pathway (PPP) or Hexose Monophosphate Shunt (HMP) or phosphogluconate pathway occurs in the cytosol of mammalian cells. It involves oxidation of glucose to CO₂ and water through a series of reactions in which NADP is reduced to NADPH. Complete breakdown of one molecule of glucose forms 12 NADPH equal to 36 ATP molecules.

TOPIC 3

Respiratory Quotient and **Respiratory Balance Sheet**

38		Quotient (RQ) value of [NEET (National) 2019]
	(a)0.7	(b)0.07

(c)0.09 (d)0.9 Ans. (a)

The RQ value of tripalmitin is 0.7. It can be calculated as follows Respiratory Quotient (RO) = Amount of CO₂ released

Amount of O₂ Consumed 2 $(C_{c_1}H_{c_2}O_{c_1}) + 145 O_2 \rightarrow 102CO_2 + 98 H_2O_2$ Tripalmitin $RQ = \frac{102 CO_2}{1450 O_2} = 0.7$

It is to note that RQ of common fats is usually less than 1 under aerobic conditions.

39 How many ATP molecules could maximally be generated from one molecule of glucose, if the complete oxidation of one mole of glucose to CO_2 and H_2O yields 686 kcal and the useful chemical energy available in the high energy phosphate bond of one mole of ATP is 12 kcal? [CBSE AIPMT 2006]

(b)57 (c)1 (d)2 (a)30

Ans. (b)

One mole of ATP liberates 12 kcal of energy. so 686 kcal will be liberated by 686/12 = 57.1 ATP molecules.

40 How many ATP molecules are produced by aerobic oxidation of one molecule of alucose? [CBSE AIPMT 2002]

(a)2	(b)4	(c)38	(d)34
(a) Z	(U)4	(0)00	(u) 54

Ans. (c)

A total of 38 molecules of ATP are produced during aerobic respiration of one molecule of glucose

Summary of ATP synthesis

8 ATP from glycolysis.

6 ATP from acetyl Co-A.

24 ATP from Krebs' cycle.

Total = 38 ATP from aerobic oxidation of one molecule of glucose.

41 Net gain of ATP molecules during aerobic respiration is

[CBSE AIPMT 1999]

(a) 36 molecules (b) 38 molecules (c) 40 molecules (d) 48 molecules

Ans. (b)

During aerobic respiration, 38 ATP molecules are gained. If specifically aerobic respiration in eukaryote is asked, then the answer would be 36 ATP because 2 ATP molecules are produced by FADH₂ which accepts the H^+ from 2 NADH molecules produced in glycolysis.

42 Respiratory quotient (RQ) for fatty

acid is	[CBSE AIPMT 1995]
(a)>1	(b) < 1
(c)1	(d)0

Ans. (b)

Respiratory Quotient (RQ)

Volume of CO₂ formed Volume of O₂ utilised

In fats, large amount of O_2 is used to combine with H_2 , so output of CO₂ is less and RQ is only 0.70, i.e., less than unity.

43 Respiratory substrate yielding maximum number of ATP molecule is [CBSE AIPMT 1994] (a) ketogenic amino acids (b) glucose (c) amylose (d) glycogen

Ans. (b)

Respiratory substrate yielding maximum number of ATP molecules is glucose. One glucose molecule on aerobic respiration yields 36 ATP molecules.

44 Maximum amount of energy/ATP is liberated on oxidation of

[CBSE AIPMT 1994]

(a) fats (c) starch (b) proteins (d) vitamins

Ans. (a)

Fats or lipids are second to carbohydrates as a source of energy. By weight, each gram mol of fat yields about 9.3 kcal of energy, i.e. more than double of that yielded by glucose.

45 Apparatus to measure rate of respiration and RQ is

[CBSE AIPMT 1992]

(a) auxanometer (b) potometer (c) respirometer (d) manometer

Ans. (c)

Respirometer is an instrument used to measure the rate of respiration and also Respiratory Quotient (RQ). The most common respirometer is Ganong's respirometer.

46 When one glucose molecule is completely oxidised, it changes [CBSE AIPMT 1992]

- (a) 36 ADP molecules into 36 ATP molecules
- (b) 38 ADP molecules into 38 ATP molecules
- (c) 30 ADP molecules into 30 ATP molecules
- (d) 32 ADP molecules into 32 ATP molecules

Ans. (b)

In aerobic respiration or biological oxidation of one glucose molecule, 38 ADP molecules change into 38 ATP molecules, where donor phosphate is inorganic phosphate. ATP molecules are the energy currency of the cell, i.e. the common immediate source of energy in cellular activity.

47 Which one of the following statements about cytochrome 450 is wrong? [CBSE AIPMT 1999]

- (a) It contains iron
- (b) It is a coloured cell
- (c) It has an important role in metabolism
- (d) It is an enzyme involved in oxidation reactions

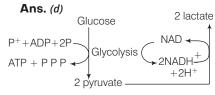
Ans. (b)

Cytochrome is not a coloured cell, instead this is a respiratory pigment-mixture of iron and protein which are electron acceptors. Cytochrome are membrane bound hemeproteins contains heme groups and are primarily responsible for the generation of ATP via electron transport.

48 RQ is

[CBSE AIPMT 1988]

(a) C/N (b) N/C (c) CO_2/O_2 (d) O_2/CO_2


Ans. (c)

Respiratory Quotient (RQ) is the ratio of volume of CO₂ evolved to the volume of oxygen consumed per unit time per unit weight. Therefore, $RQ = CO_2/O_2$. It is useful in knowing the type of respiration, major transformations and respiratory substrate.

TOPIC 4 Fermentation

49 In which one of the following processes CO_2 is not released? [CBSE AIPMT 2014]

(a) Aerobic respiration in plants (b) Aerobic respiration in animals (c) Alcoholic fermentation (d) Lactate fermentation

Lactic acid fermentation is process by which glucose, fructose and sucrose

are converted into energy and the metabolite lactate. It is an anaerobic fermentation reaction that occurs in some bacteria and animal cells and allows glycolysis to continue by ensuring that NADH is returned to its oxidised state (NAD⁺).

50 The energy-releasing metabolic process in which substrate is oxidised without an external electron acceptor is called

[CBSE AIPMT 2010, 08]

- (a) glycolysis (b) fermentation (c) aerobic respiration
- (d) photorespiration

Ans. (b)

Fermentation takes place in the lack of oxygen (when the electron transport chain is unusable) and becomes the cell's primary means of ATP (energy) production. It turns NADH and pyruvate in the glycolysis into NAD⁺ and various small molecules depending on the type of fermentation. In the presence of O_{2} , NADH and pyruvate are used to generate ATP in respiration. It is called oxidative respiration.

51 In alcoholic fermentation [CBSE AIPMT 2003]

- (a) oxygen is the electron acceptor
- (b) triose phosphate is the electron donor while acetaldehyde is the electron acceptor
- (c) triose phosphate is the electron donor while pyruvic acid is the electron acceptor
- (d) there is no electron donor

Ans. (b)

- In alcoholic fermentation,
- (a) NADH (formed during conversion of triose-3 phosphate to 3 phosphoglycerate) is oxidised to NAD⁺
- (b) electrons are accepted by acetaldehyde formed by decarboxylation of pyruvate.

52 Fermentation is anaerobic production of [CBSE AIPMT 1996]

- (a) Protein and acetic acid (b) alcohol, lactic acid or similar
 - compounds
- (c) ethers and acetones
- (d) alcohol and lipoproteins

Ans. (b)

Fermentation is defined as anaerobic break down of carbohydrates and other organic compounds to form aldehyde, alcohol and organic acids (lactic acid) with the help of microorganisms or their enzymes.

53 Fermentation products of yeast

[CBSE AIPMT 1994]

 $(a)H_{2}O + CO_{2}$ (b) methyl alcohol +CO₂ (c) methyl alcohol + H₂O (d) ethyl alcohol + CO_2

Ans. (d)

are

Yeast cells undergo alcoholic fermentation in which glucose is first converted into pyruvic acid. In the presence of pyruvic decarboxylase, it is changed into acetaldehyde. Alcohol dehydrogenase changes it to ethyl alcohol and CO₂.

54 Life without air would be [CBSE AIPMT 1993]

(a) reductional (b) free from oxidative damage (c) impossible (d) anaerobic

Ans. (d)

Anaerobic means 'in the absence of molecular oxygen', so life without air would be anaerobic. The atmosphere of earth at the time of origin of life was without free oxygen atoms, so the primitive atmosphere was reducing.

55 Out of 36 ATP molecules produced per glucose molecule during respiration [CBSE AIPMT 1991]

- (a) 2 are produced outside glycolysis and 34 during respiratory chain
- (b) 2 are produced outside mitochondria and 34 inside mitochondria
- (c) 2 during glycolysis and 34 during Krebs' cycle
- (d) all are formed inside mitochondria

Ans. (b)

A total of 38 ATP molecules are produced per glucose molecule during respiration. Out of which, 2 ATP are produced outside mitochondria (i.e. glycolysis in cytoplasm) and 36 ATP inside mitochondria (i.e. 2 ATP through Krebs' cycle and 34 ATP from NADH/FADH, through respiratory chain). In contrast, in some cells the number of ATP produced inside mitochondria equals to 34 and thus, there is a net synthesis of 36 ATP molecules.