FINAL JEE-MAIN EXAMINATION - JUNE, 2022

(Held On Friday 24 ${ }^{\text {th }}$ June, 2022)
TIME: 3: 00 PM to 6: 00 PM

PHYSICS

SECTION-A

1. Identify the pair of physical quantities that have same dimensions :
(A) velocity gradient and decay constant
(B) wien's constant and Stefan constant
(C) angular frequency and angular momentum
(D) wave number and Avogadro number

Official Ans. by NTA (A)

Sol. Velocity gradient $=\frac{\mathrm{dV}}{\mathrm{dx}}=\frac{1}{\mathrm{~S}}$
$\lambda=\frac{1}{S}$
2. The distance between Sun and Earth is R. The duration of year if the distance between Sun and Earth becomes 3 R will be :
(A) $\sqrt{3}$ years
(B) 3 years
(C) 9 years
(D) $3 \sqrt{3}$ years

Official Ans. by NTA (D)

Sol. $\quad T^{\prime}=T\left(\frac{3 R}{R}\right)^{3 / 2}=3 \sqrt{3} T$
3. A stone of mass m, tied to a string is being whirled in a vertical circle with a uniform speed. The tension in the string is :
(A) the same throughout the motion
(B) minimum at the highest position of the circular path
(C) minimum at the lowest position of the circular path
(D) minimum when the rope is in the horizontal position

Official Ans. by NTA (B)

Sol. Theory

TEST PAPER WITH SOLUTION

4. Two identical charged particles each having a mass 10 g and charge $2.0 \times 10^{-7} \mathrm{C}$ area placed on a horizontal table with a separation of L between then such that they stay in limited equilibrium. If the coefficient of friction between each particle and the table is 0.25 , find the value of L . [Use $\mathrm{g}=10 \mathrm{~ms}^{-2}$]
(A) 12 cm
(B) 10 cm
(C) 8 cm
(D) 5 cm

Official Ans. by NTA (A)

Sol. $\frac{\mathrm{kq}^{2}}{\mathrm{~L}^{2}}=\mu \mathrm{mg} \Rightarrow \mathrm{L}=\sqrt{\frac{\mathrm{k}}{\mu \mathrm{mg}}} \mathrm{q}$
5. A Carnot engine take 5000 kcal of heat from a reservoir at $727^{\circ} \mathrm{C}$ and gives heat to a sink at $127^{\circ} \mathrm{C}$. The work done by the engine is :
(A) $3 \times 10^{6} \mathrm{~J}$
(B) Zero
(C) 12.6×10^{6} J
(D) $8.4 \times 10^{6} \mathrm{~J}$

Official Ans. by NTA (C)

Sol. $\quad \mathrm{L}=\frac{\mathrm{WD}}{\mathrm{Q}_{\mathrm{H}}}$

$$
\begin{aligned}
\Rightarrow \mathrm{WD} & =\mathrm{Q}_{\mathrm{H}}\left(1-\frac{\mathrm{T}_{\mathrm{L}}}{\mathrm{~T}_{\mathrm{H}}}\right) \\
& =5 \times 10^{3}\left(1-\frac{400}{1000}\right) \\
& =3000 \mathrm{kcal}
\end{aligned}
$$

6. Two massless springs with spring constants 2 k and 2 k , carry 50 g and 100 g masses at their free ends. These two masses oscillate vertically such that their maximum velocities are equal. Then, the ratio of their respective amplitudes will be :
(A) $1: 2$
(B) $3: 2$
(C) $3: 1$
(D) $2: 3$

Official Ans. by NTA (B)

Sol. $\quad \mathrm{V}_{\text {max }}=\omega \mathrm{A}$
$\Rightarrow \frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{\omega_{2}}{\omega_{1}}=\sqrt{\frac{9}{2} \times \frac{1}{2}}=\frac{3}{2}$
7. What will be the most suitable combination of three resistors $\mathrm{A}=2 \Omega, \mathrm{~B}=4 \Omega, \mathrm{C}=6 \Omega$ so that $\left(\frac{22}{3}\right) \Omega$ is equivalent resistance of combination?
(A) Parallel combination of A and C connected in series with B.
(B) Parallel combination of A and B connected in series with C .
(C) Series combination of A and C connected in parallel with B.
(D) Series combination of B and C connected in parallel with A.

Official Ans. by NTA (B)

Sol. $\Rightarrow \frac{4}{3}+6=\frac{22}{3}$
8. The soft-iron is a suitable material for making an electromagnet. This is because soft-iron has :
(A) low coercively and high retentively
(B) low coercively and low permeability
(C) high permeability and low retentively
(D) high permeability and high retentively

Official Ans. by NTA (C)

Sol. Theory
9. A proton, a deuteron and an α-particle with same kinetic energy enter into a uniform magnetic field at right angle to magnetic field. The ratio of the radii of their respective circular paths is :
(A) $1: \sqrt{2}: \sqrt{2}$
(B) $1: 1: \sqrt{2}$
(C) $\sqrt{2}: 1: 1$
(D) $1: \sqrt{2}: 1$

Official Ans. by NTA (D)
10. Given below are two statements :

Statement-I : The reactance of an ac circuit is zero. It is possible that the circuit contains a capacitor and an inductor.
Statement-II : In ac circuit, the average poser delivered by the source never becomes zero.

In the light of the above statements, choose the correct answer from the options given below :
(A) Both Statement I and Statement II are true.
(B) Both Statement I and Statement II are false.
(C) Statement I is true but Statement II in false.
(D) Statement I is false but Statement II is true.

Official Ans. by NTA (C)

Sol. if $\mathrm{R}=0, \mathrm{P}=0$
11. Potential energy as a function of r is given by $\mathrm{U}=\frac{\mathrm{A}}{\mathrm{r}^{10}}-\frac{\mathrm{B}}{\mathrm{r}^{5}}$, where r is the interatomic distance, A and B are positive constants. The equilibrium distance between the two atoms will be :
(A) $\left(\frac{A}{B}\right)^{\frac{1}{5}}$
(B) $\left(\frac{B}{A}\right)^{\frac{1}{5}}$
(C) $\left(\frac{2 \mathrm{~A}}{\mathrm{~B}}\right)^{\frac{1}{5}}$
(D) $\left(\frac{\mathrm{B}}{2 \mathrm{~A}}\right)^{\frac{1}{5}}$

Official Ans. by NTA (C)

Sol. $\frac{-10 A}{r^{11}}+\frac{5 B}{r^{6}}=0$
$\mathrm{r}^{5}=\frac{10 \mathrm{~A}}{5 \mathrm{~B}}=\frac{2 \mathrm{~A}}{\mathrm{~B}}$
12. An object of mass 5 kg is thrown vertically upwards from the ground. The air resistance produces a constant retarding force of 10 N throughout the motion. The ratio of time of ascent to the time of descent will be equal to : [Use $\mathrm{g}=10 \mathrm{~ms}^{-2}$]
(A) $1: 1$
(B) $\sqrt{2}: \sqrt{3}$
(C) $\sqrt{3}: \sqrt{2}$
(D) $2: 3$

Official Ans. by NTA (B)

Sol.

$6 \mathrm{t}_{1}^{2}=4 \mathrm{t}_{2}^{2}$
13. A fly wheel is accelerated uniformly from rest and rotates through 5 rad in the first second. The angle rotated by the fly wheel in the next second, will be :
(A) 7.5 rad
(B) 15 rad
(C) 20 rad
(D) 30 rad

Official Ans. by NTA (B)

Sol. $\quad 5=\frac{1}{2} \alpha(1)^{2}$
$\theta=\frac{1}{2} \alpha(2)^{2}$
$\theta-5=15$
14. A 100 g of iron nail is hit by a 1.5 kg hammer striking at a velocity of $60 \mathrm{~ms}^{-1}$. What will be the rise in the temperature of the nail if one fourth of energy of the hammer goes into heating the nail? [Specific heat capacity of iron $=0.42 \mathrm{Jg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$]
(A) $675^{\circ} \mathrm{C}$
(B) $1600^{\circ} \mathrm{C}$
(C) $160.7^{\circ} \mathrm{C}$
(D) $6.75^{\circ} \mathrm{C}$

Official Ans. by NTA (C)

Sol. $\frac{1}{2} \times 1.5 \times 60^{2} \times \frac{1}{4}=0.1 \times 420 \times \Delta \mathrm{T}$
15. If the charge on a capacitor is increased by 2 C , the energy stored in it increases by 44%. The original charge on the capacitor is (in C) :
(A) 10
(B) 20
(C) 30
(D) 40

Official Ans. by NTA (A)

Sol. $U \propto q^{2}$
$\Rightarrow \mathrm{q}_{\mathrm{f}}=1.2 \mathrm{q}$
$q_{f}-q=2$
$\Rightarrow 1.2 \mathrm{q}-\mathrm{q}=2$
$\mathrm{q}=10$
16. A long cylindrical volume contains a uniformly distributed charge of density ρ. The radius of cylindrical volume is R. A charge particle (q) revolves around the cylinder in a circular path. The kinetic of the particle is :
(A) $\frac{\rho q R^{2}}{4 \varepsilon_{0}}$
(B) $\frac{\rho \mathrm{qR}^{2}}{2 \varepsilon_{0}}$
(C) $\frac{\mathrm{q} \rho}{4 \varepsilon_{0} \mathrm{R}^{2}}$
(D) $\frac{4 \varepsilon_{0} R^{2}}{q \rho}$

Official Ans. by NTA (A)

Sol. $\quad \mathrm{E}=2 \pi \mathrm{r} \ell=\frac{\rho \pi \mathrm{r}^{2} \ell}{\varepsilon_{0}}$
$\mathrm{qE}=\frac{\mathrm{q} \rho \mathrm{R}^{2}}{2 \varepsilon_{0} \mathrm{r}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
$\mathrm{mv}^{2}=\frac{\mathrm{q} \rho \mathrm{R}^{2}}{2 \varepsilon_{0}}$

17. An electric bulb is rated as 200 W . What will be the peak magnetic field at 4 m distance produced by the radiations coming from this bulb? Consider this bulb as a point source with 3.5% efficiency.
(A) $1.19 \times 10^{-8} \mathrm{~T}$
(B) $1.71 \times 10^{-8} \mathrm{~T}$
(C) $0.84 \times 10^{-8} \mathrm{~T}$
(D) $3.36 \times 10^{-8} \mathrm{~T}$

Official Ans. by NTA (B)

Sol. $\frac{\eta \mathrm{P}}{4 \pi \mathrm{r}^{2}}=\frac{\mathrm{cB}_{0}^{2}}{2 \mu_{0}}$
$\mathrm{B}_{0}=\sqrt{\frac{\mu_{0}}{4 \pi} \frac{\eta \mathrm{P}}{\mathrm{c}}} \frac{1}{\mathrm{r}}$
$\Rightarrow \mathrm{B}_{0}=\frac{1}{4} \sqrt{\frac{10^{-7} \times 4 \times 3.5}{3 \times 10^{8}}}=1.71 \times 10^{-8} \mathrm{~T}$
18. The light of two different frequencies whose photons have energies 3.8 eV and 1.4 eV respectively, illuminate a metallic surface whose work function is 0.6 eV successively. The ratio of maximum speeds of emitted electrons for the two frequencies respectivly will be :
(A) $1: 1$
(B) $2: 1$
(C) $4: 1$
(D) $1: 4$

Official Ans. by NTA (B)

Sol. $\sqrt{\frac{3.8-0.6}{1.4-0.6}}=\sqrt{\frac{3.2}{0.8}}=2$
19. Two light beams of intensities in the ratio of $9: 4$ are allowed to interfere. The .ratio of the intensity of maxima and minima will be :
(A) $2: 3$
(B) $16: 81$
(C) $25: 169$
(D) $25: 1$

Official Ans. by NTA (D)

Sol. $\sqrt{\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}}=\sqrt{\frac{9}{4}}=\frac{3}{2}$
$\left(\frac{\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}}{\sqrt{\mathrm{I}_{1}}-\sqrt{\mathrm{I}_{2}}}\right)^{2}=5^{2}=25$
20. In Bohr's atomic model of hydrogen, let K. P and E are the kinetic energy, potential energy and total energy of the electron respectively. Choose the correct option when the electron undergoes transitions to a higher level :
(A) All K. P and E increase.
(B) K decreases. P and E increase.
(C) P decreases. K and E increase.
(D) K increases. P and E decrease.

Official Ans. by NTA (B)

SECTION-B

1. A body is projected from the ground at an angle of 45° with the horizontal. Its velocity after 2 s is $20 \mathrm{~ms}^{-1}$. The maximum height reached by the body during its motion is \qquad m. (use $\mathrm{g}=10 \mathrm{~ms}^{-2}$)

Official Ans. by NTA (20)

Sol.

$\stackrel{\mathrm{v}_{\mathrm{x}}=}{\mathrm{F}_{\mathrm{y}}}$
$\mathrm{v}_{\mathrm{y}}=\mathrm{v}_{\mathrm{x}}-20$
$\sqrt{\left(\mathrm{u}_{\mathrm{x}}-20\right)^{2}+\mathrm{u}_{\mathrm{x}}^{2}}=20$
$\Rightarrow 2 \mathrm{u}_{\mathrm{x}}^{2}-40 \mathrm{u}_{\mathrm{x}}=0$
$\therefore \mathrm{u}_{\mathrm{x}}=20$
2. An antenna is placed in a dielectric medium of dielectric constant 6.25 . If the maximum size of that antenna is 5.0 mm . it can radiate a signal of minimum frequency of \qquad GHz.
(Given $\mu_{\mathrm{r}}=1$ for dielectric medium)
Official Ans. by NTA (6)

Sol. $\quad C^{\prime}=\frac{C}{\sqrt{\mu_{\mathrm{r}} \varepsilon_{\mathrm{r}}}}=\frac{3 \times 10^{8}}{\sqrt{6.25}}=\frac{3 \times 10^{8}}{2.5}$
$\mathrm{f} \lambda=1.25 \times 10^{8} \mathrm{~s}$
$\Rightarrow \mathrm{f}\left(5 \times 10^{-3} \times 4\right)=1.25 \times 10^{8}$
$\mathrm{f}=6.25 \mathrm{GHz}$
So $\mathrm{f} \approx 6$
3. A potentiometer wire of length 10 m and resistance 20Ω is connected in series with a 25 V battery and an external resistance 30Ω. A cell of emf E in secondary circuit is balanced by 250 cm long potentiometer wire. The value of E (in volt) is $\frac{x}{10}$. The value of x is \qquad -.

Official Ans. by NTA (25)

Sol.

$I=\frac{25}{50}=\frac{1}{2} A$
$\therefore \Delta \mathrm{V}=10 \mathrm{~V}$
$10 \mathrm{~m} \rightarrow 10 \mathrm{~V}$
$2.5 \mathrm{~m} \rightarrow 2.5 \mathrm{~V}$
4. Two travelling waves of equal amplitudes and equal frequencies move in opposite directions along a string. They interfere to produce a stationary wave whose equation is given by
$y=\left(10 \cos \pi x \sin \frac{2 \pi t}{T}\right) \mathrm{cm}$

The amplitude of the particle at $x=\frac{4}{3} \mathrm{~cm}$ will be
\qquad cm .

Official Ans. by NTA (5)
5. In the given circuit- the value of current I_{L} will be
\qquad mA .
$\left(\right.$ When $\left.R_{L}=1 \mathrm{k} \Omega\right)$

Official Ans. by NTA (5)

Sol. $I_{L}=\frac{5}{1000}=5 \mathrm{~mA}$
6. A sample contains $10^{-2} \mathrm{~kg}$ each of two substances A and B with half lives 4 s and 8 s respectively. The ratio of then atomic weights is $1: 2$. The ratio of the amounts of A and B after 16 s is $\frac{\mathrm{x}}{100}$. the value of x is \qquad .

Official Ans. by NTA (25)

Sol. $\quad N_{t}=N_{0}(0.5)^{\frac{t}{t_{1 / 2}}}$
$=\frac{\mathrm{m}}{\mathrm{M}} \times \mathrm{N}_{\mathrm{A}}(0.5)^{\frac{\mathrm{t}}{\mathrm{t}_{1 / 2}}}$
$\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}(0.5)^{\mathrm{t}}\left[\frac{1}{\mathrm{~T}_{\mathrm{A}}}-\frac{1}{\mathrm{~T}_{\mathrm{B}}}\right]$
$=2(0.5)^{16 \times \frac{1}{8}}=\frac{2}{4}=\frac{1}{2}=\frac{\mathrm{x}}{100}$
7. A ray of ligh is incident at an angle of incidence 60° on the glass slab of refractive index $\sqrt{3}$. After refraction, the light ray emerges out from other parallel faces and lateral shift between incident ray and emergent ray is $4 \sqrt{3} \mathrm{~cm}$. The thickness of the glass slab is \qquad cm .

Official Ans. by NTA (12)

Sol. $\ell=\operatorname{tsin} \mathrm{i}\left[1-\frac{\operatorname{cosi}}{\sqrt{\mu^{2}-\sin ^{2} \mathrm{i}}}\right]$
$\Rightarrow 4 \sqrt{3}=t \sin 60^{\circ}\left[1-\frac{\cos 60^{\circ}}{\sqrt{3-\frac{3}{4}}}\right]$
8. A circular coil of 1000 turns each with area $1 \mathrm{~m}^{2}$ is rotated about its vertical diameter at the rate of one revolution per second in a uniform horizontal magnetic field of 0.07 T . The maximum voltage generation will be \qquad V.

Official Ans. by NTA (440)

Sol. $\epsilon_{\max }=\mathrm{BAN} \omega$
$=0.07 \times 1 \times 10^{3} \times 2 \pi$
$=140 \pi \approx 440$
9. A monoatomic gas performs a work of $\frac{Q}{4}$ where Q is the heat supplied to it. The molar heat capaticy of the gas will be \qquad R during this transformation.

Where R is the gas constant.
Official Ans. by NTA (2)
10. In an experment ot verify Newton's law of cooling, a graph is plotted between, the temperature difference (ΔT) of the water and surroundings and time as shown in figure. The initial temperature of water is taken as $80^{\circ} \mathrm{C}$. The value of t_{2} as mentioned in the graph will be \qquad .

Official Ans. by NTA (16)

Sol. $T-T_{0}\left(T_{i}-T_{0}\right) e^{-\frac{B t}{m s}}$
$6 \lambda=\ln 1.5$
$40=60 \mathrm{e}^{-\lambda(6)} \Rightarrow 6 \lambda=\ln 1.5$
$20=60 \mathrm{e}^{-\lambda \mathrm{t}_{2}} \Rightarrow \mathrm{t}_{2} \lambda=\ln 3$
$\frac{\mathrm{t}_{2}}{6}=\frac{\ln 3}{\ln 1.5}$
$\therefore \mathrm{t}_{2}=16.25 \mathrm{~min}$

So ≈ 16

Sol. $\Delta \mathrm{Q}=\Delta \mathrm{E}+\mathrm{WD} \Rightarrow \mathrm{Q}=\Delta \mathrm{E}+\frac{\mathrm{Q}}{4}$
$\Rightarrow \mathrm{n} \frac{3 \mathrm{R}}{2} \Delta \mathrm{~T}=\Delta \mathrm{E}=\frac{3 \mathrm{Q}}{4}$
$\therefore \mathrm{n} \Delta \mathrm{T}=\frac{\mathrm{Q}}{2 \mathrm{R}}$
$\therefore \mathrm{C}=2 \mathrm{R}$

FINAL JEE-MAIN EXAMINATION - JUNE, 2022

(Held On Friday 24 ${ }^{\text {th }}$ June, 2022)
TIME: 3: 00 PM to 6:00 PM

CHEMISTRY

SECTION-A

1. 120 of an organic compound that contains only carbon and hydrogen gives 330 g of CO_{2} and 270 g of water on complete combustion. The percentage of carbon and hydrogen, respectively are.
(A) 25 and 75
(B) 40 and 60
(C) 60 and 40
(D) 75 and 25

Official Ans. by NTA (D)

Sol. Given mass of organic compound $=120$
mass of $\mathrm{CO}_{2}(\mathrm{~g})=330 \mathrm{~g}$
mass of $\mathrm{H}_{2} \mathrm{O}(\ell)=270 \mathrm{~g}$
mass of carbon $=\mathrm{n}_{\mathrm{CO}_{2}} \times 12$
$=\frac{330}{44} \times 12=90 \mathrm{~g}$
$\%$ of carbon $=\frac{90}{120} \times 100=75 \%$
mass of hydrogen $=\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}} \times 2$
$=\frac{270}{18} \times 2=30 \mathrm{~g}$
$\%$ of hydrogen $=\frac{30}{120} \times 100=25 \%$
2. The energy of one mole of photons of radiation of wavelength 300 nm is
(Given : $\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}, \mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$, $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$)
(A) $235 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(B) $325 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(C) $399 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(D) $435 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Official Ans. by NTA (C)

Sol. Energy of one mole of photons $=\frac{h c}{\lambda} \times N_{A}$
$=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{300 \times 10^{-9}} \times 6.02 \times 10^{23}$
$=399.13 \times 10^{3}$ Joule $/ \mathrm{mole}$
$=399 \mathrm{~kJ} / \mathrm{mole}$

TEST PAPER WITH SOLUTION

3. The correct order of bound orders of $\mathrm{C}_{2}^{2-}, \mathrm{N}_{2}^{2-}$ and O_{2}^{2-} is, respectively.
(A) $\mathrm{C}_{2}^{2-}<\mathrm{N}_{2}^{2-}<\mathrm{O}_{2}^{2-}$
(B) $\mathrm{O}_{2}^{2-}<\mathrm{N}_{2}^{2-}<\mathrm{C}_{2}^{2-}$
(C) $\mathrm{C}_{2}^{2-}<\mathrm{O}_{2}^{2-}<\mathrm{N}_{2}^{2-}$
(D) $\mathrm{N}_{2}^{2-}<\mathrm{C}_{2}^{2-}<\mathrm{O}_{2}^{2-}$

Official Ans. by NTA (B)

Sol. Species
Bond order
C_{2}^{2-}
3
N_{2}^{2-}
O_{2}^{2-}
1
4. At $25^{\circ} \mathrm{C}$ and 1 atm pressure, the enthalpies of combustion are as given below:

Substance	H_{2}	C (graphite)	$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
$\frac{\Delta_{\mathrm{C}} \mathrm{H}^{\Theta}}{\mathrm{kJmol}^{-1}}$	-286.0	-394.0	-1560.0

The enthalpy of formation of ethane is
(A) $+54.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(B) $-68.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(C) $-86.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(D) $+97.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Official Ans. by NTA (C)

Sol. $\quad \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\frac{7}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\ell)$
$\Delta_{\mathrm{C}} \mathrm{H}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)=2 \Delta_{\mathrm{f}} \mathrm{H} \mathrm{CO}_{2}(\mathrm{~g})+3 \Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}, \ell\right)$
$-\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{~g}\right)$
$-1560=2(-394)+3(-286)-\Delta_{f} \mathrm{H}\left(\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{~g}\right)$
$\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{~g}\right)=-86 \mathrm{~kJ} / \mathrm{mole}$
5. For a first order reaction, the time required for completion of 90% reaction is ' x ' times the half life of the reaction. The value of ' x ' is
(Given: $\ln 10=2.303$ and $\log 2=0.3010$)
(A) 1.12
(B) 2.43
(C) 3.32
(D) 33.31

Official Ans. by NTA (C)

Sol. Given $\mathrm{t}_{0.90}=\mathrm{t}_{0.90}=\mathrm{xt}_{1 / 2}$
First order rate constant
$K=\frac{\ln 2}{t_{1 / 2}}=\frac{1}{x t_{1 / 2}} \ln \frac{A_{0}}{A_{0}-A_{0} \times \frac{90}{100}}$
$\frac{\ln 2}{\mathrm{t}_{1 / 2}}=\frac{\ln 10}{\mathrm{xt}_{1 / 2}}$
$\mathrm{x}=\frac{\ln 10}{\ln 2}=\frac{2.303}{2.303 \times 0.3010}=3.32$
6. Metals generally melt at very high temperature. Amongst the following, the metal with the highest melting point will be
(A) Hg
(B) Ag
(C) Ga
(D) Cs

Official Ans. by NTA (B)

Sol. $\mathrm{Hg}, \mathrm{Ga}, \mathrm{Cs}$ are liquid near room temperature But Ag (silver) is solid.
7. Which of the following chemical reactions represents Hall-Heroult Process?
(A) $\mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}$
(B) $2 \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{Al}+3 \mathrm{CO}_{2}$
(C) $\mathrm{FeO}+\mathrm{CO} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$
(D) $2\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{(\mathrm{aq})}^{-}+\mathrm{Zn}(\mathrm{s}) \rightarrow 2 \mathrm{Au}(\mathrm{s})+\left[\mathrm{Zn}\left(\mathrm{CN}_{4}\right)\right]^{2-}$

Official Ans. by NTA (B)

Sol. Hall Heroult process is the major industrial process for extraction of aluminium.
8. In the industrial production of which of the following, molecular hydrogen is obtained as a byproduct?
(A) NaOH
(B) NaCl
(C)Na metal
(D) $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Official Ans. by NTA (A)

Sol. Sodium hydroxide is generally prepared commercially by electrolysis of sodium chloride in castner Kellner cell.
at cathode : $\mathrm{Na}+\mathrm{e}^{-} \xrightarrow{\mathrm{Hg}} \mathrm{Na}-$ amalgum

$$
\text { Anode }: \mathrm{Cl}^{-} \longrightarrow \frac{1}{2} \mathrm{Cl}_{2}+\mathrm{e}^{-}
$$

The Na-amalgam is treated with water to give sodium hydroxide and hydrogen gas :

2 Na (amalgam) $+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}+2 \mathrm{Hg}$
9. Which one of the following compounds is used as a chemical in certain type of fire extinguishers?
(A) Baking Soda
(B) Soda ash
(C) Washing Soda
(D) Caustic Soda

Official Ans. by NTA (A)

Sol. Sodium hydrogencarbonate (Baking soda), NaHCO_{3} is used in the fire extinguishers.
10. PCl_{5} is well known. but NCl_{5} is not. Because.
(A) nitrogen is less reactive than phosphorous.
(B) nitrogen doesn't have d-orbitals in its valence shell.
(C) catenation tendency is weaker in nitrogen than phosphorous.
(D) size of phosphorous is larger than nitrogen.

Official Ans. by NTA (B)

Sol. PCl_{5} forms five bonds by using the d -orbitals to "expand the octet". But NCl_{5} does not exist because there are no d-orbitals in the valence shell ($2^{\text {nd }}$ shell). Therefore there is no way to expand the octet.
11. Transition metal complex with highest value of crystal field splitting $\left(\Delta_{0}\right)$ will be
(A) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(B) $\left[\mathrm{Mo}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(C) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(D) $\left[\mathrm{Os}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Official Ans. by NTA (D)

Sol. CFSE of octahedral complexes with water is greater for 5 d series metal centre ion as compared to 3 d and 4 d series metal centre.
12. Some gases are responsible for heating of atmosphere (green house effect). Identify from the following the gaseous species which does not cause it.
(A) CH_{4}
(B) O_{3}
(C) $\mathrm{H}_{2} \mathrm{O}$
(D) N_{2}

Official Ans. by NTA (D)

Sol. $\mathrm{CH}_{4}, \mathrm{O}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ causes global warming in Tropospheric level.
N_{2} does not cause global warming.
13. Arrange the following carbocations in decreasing order of stability.

A

B

C
(A) A $>$ C $>$ B
(B) A $>$ B $>$ C
(C) C $>$ B $>$ A
(D) C $>$ A $>$ B

Official Ans. by NTA (B)

Sol. Carbocation is stabilised by resonance with lone pairs on oxygen atom and +H effect of $2 \underline{\underline{a}}$
hydrogens

B $>\mathrm{A}>\mathrm{C}$
14. Given below are two statements.

Statement I : The presence of weaker π - bonds make alkenes less stable than alkanes.

Statement II : The strength of the double bond is greater than that of carbon-carbon single bond.
In the light of the above statements, choose the correct answer from the options given below.
(A) Both Statement I and Statement II are correct.
(B) Both Statement I and Statement II are incorrect.
(C) Statement I is correct but Statement II is incorrect.
(D) Statement I is incorrect but Statement II is correct.

Official Ans. by NTA (A)
15. Which of the following reagents/ reactions will convert ' A ' to ' B '?

(A) PCC oxidation
(B) Ozonolysis
(C) $\mathrm{BH}_{3}, \mathrm{H}_{2} \mathrm{O}_{2} /{ }^{-} \mathrm{OH}$ followed by PCC oxidation
(D) HBr , hydrolysis followed by oxidation by $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

Official Ans. by NTA (C)

Sol. $\mathrm{BH}_{3}, \mathrm{H}_{2} \mathrm{O}_{2} /-\mathrm{OH}$ followed by PCC oxidation.

16. Hex-4-ene-2-ol on treatment with PCC gives ' A '. ' A ' on reaction with sodium hypoiodite gives ' B ', which on further heating with soda lime gives ' C '. The compound ' C ' is
(A) 2-pentene
(B) proponaldehyde
(C) 2-butene
(D) 4-methylpent-2-ene

Official Ans. by NTA (C)

Sol.

17. The conversion of propan-1-ol to n-butylamine involves the sequential addition of reagents. The correct sequential order of reagents is.
(A)(i) SOCl_{2} (ii) KCN (iii) $\mathrm{H}_{2} / \mathrm{Ni}, \mathrm{Na}(\mathrm{Hg}) / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(B) (i) HCl (ii) $\mathrm{H}_{2} / \mathrm{Ni}, \mathrm{Na}(\mathrm{Hg}) / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(C) (i) SOCl_{2} (ii) KCN (iii) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(D) (i) HCl (ii) $\mathrm{CH}_{3} \mathrm{NH}_{2}$

Official Ans. by NTA (A)

Sol.

18. Which of the following is not an example of a condensation polymer?
(A) Nylon 6,6
(B) Decron
(C) Buna-N
(D) Silicone

Official Ans. by NTA (C)

Sol. Buna-N is an addition copolymer of 1,3-butadiene and acrylonitrile.

19. The structure shown below is of which well-known drug molecule?

(A) Ranitidine
(B) Seldane
(C) Cimetidine
(D) Codeine

Official Ans. by NTA (C)
20. In the flame test of a mixture of salts, a green flame with blue centre was observed. Which one of the following cations may be present?
(A) Cu^{2+}
(B) Sr^{2+}
(C) Ba^{2+}
(D) Ca^{2+}

Official Ans. by NTA (A)

Sol. Ion Colour of the flame

(A) Cu^{+2}	green flame with blue centre
(B) Sr^{2+}	Crimson Red
(C) Ba^{2+}	Apple green

SECTION-B

1. At 300 K , a sample of 3.0 g of gas A occupies the same volume as 0.2 g of hydrogen at 200 K at the same pressure. The molar mass of gas A is \qquad g mol^{-1} (nearest integer) Assume that the behaviour of gases as ideal. (Given: The molar mass of hydrogen $\left(\mathrm{H}_{2}\right)$ gas is $\left.2.0 \mathrm{~g} \mathrm{~mol}^{-1}\right)$

Official Ans. by NTA (45)

Sol. Given : Ideal gas A and H_{2} gas at same pressure and volume.

From ideal gas equation $\mathrm{pv}=\mathrm{nRT}$
$\mathrm{n}_{1} \mathrm{~T}_{1}=\mathrm{n}_{2} \mathrm{~T}_{2}$
$\frac{3}{\text { GMM of A }} \times 300=\frac{0.2}{2} \times 200$
GMM of $\mathrm{A}=45 \mathrm{~g} / \mathrm{mole}$
2. A company dissolves ' X ' amount of CO_{2} at 298 K in 1 litre of water to prepare soda water
$X=$ \qquad $\times 10^{-3} \mathrm{~g}$. (nearest integer)
(Given: partial pressure of CO_{2} at $298 \mathrm{~K}=0.835$ bar.

Henry's law constant for CO_{2} at $298 \mathrm{~K}=1.67 \mathrm{kbar}$.
Atomic mass of H, C and O is 1,12 and $6 \mathrm{~g} \mathrm{~mol}^{-1}$, respectively)

Official Ans. by NTA (1221 OR 1222)

Sol. From Henry law
$\mathrm{P}=\mathrm{K}_{\mathrm{H}} \mathrm{X}_{\mathrm{CO}_{2}}$
$0.835=1.67 \times 10^{3} \times 1.67 \times 10^{3} \times \frac{\mathrm{w}_{\mathrm{CO}_{2}} / 44}{\frac{\mathrm{w}_{\mathrm{CO}_{2}}}{44}+\frac{1000}{18}}$
$\mathrm{w}_{\mathrm{CO}_{2}}=1.2228 \mathrm{~g}=1222.8 \times 10^{-3} \mathrm{~g}$
Or

$$
\mathrm{P}=\mathrm{K}_{\mathrm{H}} \mathrm{X}_{\mathrm{CO}_{2}}
$$

$$
0.835=1.67 \times 10^{3} \times \frac{\mathrm{n}_{\mathrm{CO}_{2}}}{\mathrm{n}_{\mathrm{CO}_{2}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}}
$$

$$
0.835=1.67 \times 10^{3} \times \frac{\mathrm{w}_{\mathrm{CO}_{2}} / 44}{\frac{1000}{18}}
$$

$$
\mathrm{w}_{\mathrm{CO}_{2}}=1.2222 \mathrm{~g}=1222.2 \times 10^{-3} \mathrm{~g}
$$

3. PCl_{5} dissociates as
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
5 moles of PCl_{5} are placed in a 200 litre vessel which contains 2 moles of N_{2} and is maintained at 600 K . The equilibrium pressure is 2.46 atm . The equilibrium constant K_{p} for the dissociation of PCl_{5} is \qquad $\times 10^{-3}$. (nearest integer)
(Given: $\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm}^{-1} \mathrm{~mol}^{-1}$: Assume ideal gas behaviour)

Official Ans. by NTA (1107)

Sol. Given : 2 mole of N_{2} gas was present as inert gas.
Equilibrium pressure $=2.46 \mathrm{~atm}$
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{C} \ell_{2}(\mathrm{~g})$

$\mathrm{t}=0$	5	0	0
$\mathrm{t}=E q^{m}$	$5-\mathrm{x}$	x	x

from ideal gas equation
$\mathrm{PV}=\mathrm{nRT}$
$2.46 \times 200=(5-x+x+x+2) \times 0.082 \times 600$
$\mathrm{x}=3$
$\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{n}_{\mathrm{PCl}_{3}} \times \mathrm{n}_{\mathrm{Cl}_{2}}}{\mathrm{n}_{\mathrm{PCl}_{5}}} \times\left[\frac{\mathrm{P}_{\text {total }}}{\mathrm{n}_{\text {total }}}\right]$
$\frac{3 \times 3}{2} \times \frac{2.46}{10}=1.107=1107 \times 10^{-3}$
4. The resistance of conductivity cell containing 0.01 M KCl solution at 298 K is 1750Ω. If the conductively of 0.01 M KCl solution at 298 K is $0.152 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$, then the cell constant of the conductivity cell is \qquad $\times 10^{-3} \mathrm{~cm}^{-1}$.

Official Ans. by NT

Sol. $\mathrm{K}=\frac{1}{\mathrm{R}} \times$ cell constant
$0.152 \times 10^{-3}=\frac{1}{1750}$ cell constant
cell constant $=266 \times 10^{-3}$
5. When 200 mL of 0.2 M acetic acid is shaken with 0.6 g of wood charcoal, the final concentration of acetic after adsorption is 0.1 M . The mass of acetic acid adsorbed per garm of carbon is \qquad g.

Official Ans. by NTA (2)

Sol. weight of wood charcoal $=0.6 \mathrm{~g}$
Mass of acetic acid adsorbed $=\frac{M_{1} V_{1}-M_{2} V_{2}}{1000} \times 60$
$=\frac{0.2 \times 200-0.1 \times 200}{1000} \times 60$
$=1.2 \mathrm{~g}$
Mass of acetic acid adsorbed per gram of carbon $=\frac{1.2}{0.6}=2$
6. (a) Baryte, (b) Galena, (c) Zinc blende and
(d) Copper pyrites. How many of these minerals are sulphide based?

Official Ans. by NTA (3)

Sol.

(1) Baryte : BaSO_{4}
(2) Galena : PbS
(3) Zinc blende : ZnS
(4) Copper pyrite: CuFeS_{2} S_{2} sulphide $\left(\mathrm{S}^{2-}\right)$ ores
7. Manganese (VI) has ability to disproportionate in acidic solution. The difference in oxidation states of two ions it forms in acidic solution is \qquad
Official Ans. by NTA (3)

Sol. MnO_{4}^{2-} disproportionates in a neutral or acidic solution to give MnO_{4}^{-}and Mn^{+4}
$3 \mathrm{MnO}_{4}^{2-}+3 \mathrm{H}^{+} \longrightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
O.S. of Mn in $\mathrm{MnO}_{4}^{-}=+7$
O.S. of Mn in $\mathrm{MnO}_{2}=+4$
difference $=3$
8. $\quad 0.2 \mathrm{~g}$ of an organic compound was subjected to estimation of nitrogen by Dumas method in which volume of N_{2} evolved (at STP) was found to be 22.400 mL . The percentage of nitrogen in the compound is \qquad [nearest integer]
(Given: Molar mass of N_{2} is $28 \mathrm{~mol}^{-1}$. Molar volume of N_{2} at STP : 22.4 L)

Official Ans. by NTA (14)

Sol. weight of organic compound $=0.2 \mathrm{~g}$
mass of $\mathrm{N}_{2}(\mathrm{~g})$ evolved $=\frac{22.4 \times 10^{-3}}{22.4} \times 28$
$=28 \times 10^{-3} \mathrm{~g}$
$\%$ of $\mathrm{N}=\frac{28 \times 10^{-3}}{0.2} \times 100=14$

Consider the above reaction. The number of π electrons present in the product ' P ' is \qquad .
Official Ans. by NTA (2)

Sol. Number of π electron $=2$

10. In alanylglycylleucylalanylvaline, the number of peptide linkages is \qquad -.
Official Ans. by NTA (4)

Sol. There are Five amino acids and four peptide linkages.

FINAL JEE-MAIN EXAMINATION - JUNE, 2022

(Held On Friday 24th June, 2022)
TIME : 3: 00 PM to 6:00 PM

MATHEMATICS

SECTION-A

1. Let $\mathrm{x} * \mathrm{y}=\mathrm{x}^{2}+\mathrm{y}^{3}$ and $(\mathrm{x} * 1) * 1=\mathrm{x} *(1 * 1)$.

Then a value of $2 \sin ^{-1}\left(\frac{x^{4}+x^{2}-2}{x^{4}+x^{2}+2}\right)$ is
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$
(D) $\frac{\pi}{6}$

Official Ans. by NTA (B)

Sol. $\because(\mathrm{x} * 1) * 1=\mathrm{x} *(1 * 1)$
$\left(\mathrm{x}^{2}+1\right) * 1=\mathrm{x} *(2)$
$\left(x^{2}+1\right)^{2}+1=x^{2}+8$
$x^{4}+x^{2}-6=0 \Rightarrow\left(x^{2}+3\right)\left(x^{2}-2\right)=0$
$x^{2}=2$
$\Rightarrow 2 \sin ^{-1}\left(\frac{x^{4}+x^{2}-2}{x^{4}+x^{2}+2}\right)=2 \sin ^{-1}\left(\frac{1}{2}\right)$
$=\frac{\pi}{3}$
2. The sum of all the real roots of the equation $\left(\mathrm{e}^{2 \mathrm{x}}-4\right)\left(6 \mathrm{e}^{2 \mathrm{x}}-5 \mathrm{e}^{\mathrm{x}}+1\right)=0$ is
(A) $\log _{e} 3$
(B) $-\log _{e} 3$
(C) $\log _{e} 6$
(D) $-\log _{\mathrm{e}} 6$

Official Ans. by NTA (B)

Sol. $\left(e^{2 x}-4\right)\left(6 e^{2 x}-3 e^{x}-2 e^{x}+1\right)=0$
$\left(\mathrm{e}^{2 \mathrm{x}}-4\right)\left(3 \mathrm{e}^{\mathrm{x}}-1\right)\left(2 \mathrm{e}^{\mathrm{x}}-1\right)=0$
$\mathrm{e}^{2 \mathrm{x}}=4$ or $\mathrm{e}^{\mathrm{x}}=\frac{1}{3}$ or $\mathrm{e}^{\mathrm{x}}=\frac{1}{2}$
\Rightarrow sum of real roots $=\frac{1}{2} \ln 4+\ln \frac{1}{3}+\ln \frac{1}{2}$
$=-\ln 3$

TEST PAPER WITH SOLUTION

3. Let the system of linear equations
$x+y+\alpha z=2$
$3 x+y+z=4$
$x+2 z=1$
have a unique solution $\left(x^{*}, y^{*}, z^{*}\right)$. If $\left(\alpha, x^{*}\right),\left(y^{*}, \alpha\right)$ and $\left(\mathrm{x}^{*},-\mathrm{y}^{*}\right)$ are collinear points, then the sum of absolute values of all possible values of α is :
(A) 4
(B) 3
(C) 2
(D) 1

Official Ans. by NTA (C)

Sol. $\Delta=\left|\begin{array}{lll}1 & 1 & \alpha \\ 3 & 1 & 1 \\ 1 & 0 & 2\end{array}\right|=-(\alpha+3)$
$\Delta_{1}=\left|\begin{array}{lll}2 & 1 & \alpha \\ 4 & 1 & 1 \\ 1 & 0 & 2\end{array}\right|=-(3+\alpha)$
$\Delta_{2}=\left|\begin{array}{lll}1 & 2 & \alpha \\ 3 & 4 & 1 \\ 1 & 1 & 2\end{array}\right|=-(\alpha+3)$
$\Delta_{3}=\left|\begin{array}{lll}1 & 1 & 2 \\ 3 & 1 & 4 \\ 1 & 0 & 1\end{array}\right|=0$
$\alpha \neq-3, \mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=0$,
Now points $(\alpha, 1),(1, \alpha) \&(1,-1)$ are collinear
$\left|\begin{array}{ccc}\alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & -1 & 1\end{array}\right|=0$
$\Rightarrow \alpha(\alpha+1)-1(1-1)+1(-1-\alpha)=0$
$\alpha^{2}+\alpha-1-\alpha=0$
$\alpha= \pm 1$
4. Let $x, y>0$. If $x^{3} y^{2}=2^{15}$, then the least value of $3 x+2 y$ is
(A) 30
(B) 32
(C) 36
(D) 40

Official Ans. by NTA (D)

Sol. Using $\mathrm{AM} \geq \mathrm{GM}$
$\frac{x+x+x+y+y}{5} \geq\left(x^{3} \cdot y^{2}\right)^{\frac{1}{5}}$
$\frac{3 x+2 y}{5} \geq\left(2^{15}\right)^{\frac{1}{5}}$
$(3 \mathrm{x}+2 \mathrm{y})_{\text {min }}=40$
$\int \frac{\sin (x-[x])}{x-[x]} \quad, \quad x \in(-2,-1)$
5. Let $f(\mathrm{x})=\{\max \{2 \mathrm{x}, 3[|\mathrm{x}|]\}, \quad|\mathrm{x}|<1$

1 , otherwise
where [t] denotes greatest integer $\leq t$. If m is the number of points where f is not continuous and n is the number of points where f is not differentiable, then the ordered pair (m, n) is :
(A) $(3,3)$
(B) $(2,4)$
(C) $(2,3)$
(D) $(3,4)$

Official Ans. by NTA (C)

Sol. $f(x)=\left\{\begin{array}{ccc}\frac{\sin (\mathrm{x}+2)}{\mathrm{x}+2} & , & \mathrm{x} \in(-2,-1) \\ \max \{2 \mathrm{x}, 0\} & , & \mathrm{x} \in(-1,1) \\ 1 & , & \text { otherwise }\end{array}\right.$
$f\left(-2^{+}\right)=\lim _{\mathrm{h} \rightarrow 0} f(-2+\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0} \frac{\sinh }{\mathrm{~h}}=1$
f is continuous at $\mathrm{x}=-2$
$f\left(-1^{-}\right)=\lim _{h \rightarrow 0} \frac{\sin (-1-h+2)}{(-1-h+2)}=\sin 1$
$f(-1)=f\left(-1^{+}\right)=0$
$f\left(1^{+}\right)=1 \& f\left(1^{-}\right)=0 \Rightarrow f$ is not continuous at $\mathrm{x}=1$
f is continuous but not diff. at $\mathrm{x}=0$
$\left.\begin{array}{c}\Rightarrow \mathrm{f} \text { is discontinuous at } \mathrm{x}=-1 \& 1 \\ \& \mathrm{f} \text { is not diff. at } \mathrm{x}=-1,0 \& 1\end{array}\right\} \Rightarrow \begin{gathered}\mathrm{m}=2 \\ \mathrm{n}=3\end{gathered}$
6. The value of the integral $\int_{-\pi / 2}^{\pi / 2} \frac{d x}{\left(1+e^{x}\right)\left(\sin ^{6} x+\cos ^{6} x\right)}$ is equal to
(A) 2π
(B) 0
(C) π
(D) $\frac{\pi}{2}$

Official Ans. by NTA (C)

Sol. $I=\int_{-\pi / 2}^{0} \frac{d x}{\left(1+e^{x}\right)\left(\sin ^{6} x+\cos ^{6} x\right)}+\int_{0}^{\pi / 2} \frac{d x}{\left(1+e^{x}\right)\left(\sin ^{6} x+\cos ^{6} x\right)}$
Put $x=-t$
$=\int_{\pi / 2}^{0} \frac{-\mathrm{dt}}{\left(1+\mathrm{e}^{-\mathrm{t}}\right)\left(\sin ^{6} \mathrm{t}+\cos ^{6} \mathrm{t}\right)}+\int_{0}^{\pi / 2} \frac{d x}{\left(1+\mathrm{e}^{\mathrm{x}}\right)\left(\sin ^{6} \mathrm{x}+\cos ^{6} \mathrm{x}\right)}$
$=\int_{0}^{\pi / 2} \frac{\left(e^{x}+1\right) d x}{\left(1+e^{x}\right)\left(\sin ^{6} x+\cos ^{6} x\right)}$
$=\int_{0}^{\pi / 2} \frac{d x}{\left(\sin ^{2} x+\cos ^{2} x\right)\left(\sin ^{4} x-\sin ^{2} x \cos ^{2} x+\cos ^{4} x\right)}$
$=\int_{0}^{\pi / 2} \frac{\left(1+\tan ^{2} x\right) \sec ^{2} x d x}{\left(\tan ^{4} x-\tan ^{2} x+1\right)}$
Put $\tan \mathrm{x}=\mathrm{t}$
$=\int_{0}^{\infty} \frac{\left(1+\mathrm{t}^{2}\right) \mathrm{dt}}{\left(\mathrm{t}^{4}-\mathrm{t}^{2}+1\right)}$
$=\int_{0}^{\infty} \frac{\left(1+\frac{1}{\mathrm{t}^{2}}\right) \mathrm{dt}}{\mathrm{t}^{2}-1+\frac{1}{\mathrm{t}^{2}}}=\int_{0}^{\infty} \frac{\left(1+\frac{1}{\mathrm{t}^{2}}\right) \mathrm{dt}}{\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)^{2}+1}$
Put $\mathrm{t}-\frac{1}{\mathrm{t}}=\mathrm{z}$
$\left(1+\frac{1}{\mathrm{t}^{2}}\right) \mathrm{dt}=\mathrm{dz}$
$=\int_{-\infty}^{\infty} \frac{\mathrm{dz}}{1+\mathrm{z}^{2}}=\left(\tan ^{-1} \mathrm{z}\right)_{-\infty}^{\infty}$
$=\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=\pi$
7.
$\lim _{n \rightarrow \infty}\left(\frac{n^{2}}{\left(n^{2}+1\right)(n+1)}+\frac{n^{2}}{\left(n^{2}+4\right)(n+2)}+\frac{n^{2}}{\left(n^{2}+9\right)(n+3)}+\ldots+\frac{n^{2}}{\left(n^{2}+n^{2}\right)(n+n)}\right)$ is equal to
(A) $\frac{\pi}{8}+\frac{1}{4} \log _{\mathrm{e}} 2$
(B) $\frac{\pi}{4}+\frac{1}{8} \log _{\mathrm{e}} 2$
(C) $\frac{\pi}{4}-\frac{1}{8} \log _{\mathrm{e}} 2$
(D) $\frac{\pi}{8}+\log _{\mathrm{e}} \sqrt{2}$

Official Ans. by NTA (A)

Sol. $\lim _{n \rightarrow \infty}\left(\sum_{r=1}^{n} \frac{n^{2}}{\left(n^{2}+r^{2}\right)(n+r)}\right)$
$=\lim _{n \rightarrow \infty}\left(\sum_{r=1}^{n} \frac{1}{n\left(1+\left(\frac{r}{n}\right)^{2}\right)\left(1+\left(\frac{r}{n}\right)\right)}\right)$
$=\int_{0}^{1} \frac{\mathrm{dx}}{\left(1+\mathrm{x}^{2}\right)(1+\mathrm{x})}=\frac{1}{2} \int_{0}^{1} \frac{1-\mathrm{x}}{1+\mathrm{x}^{2}} \mathrm{dx}+\frac{1}{2} \int_{0}^{1} \frac{1}{1+\mathrm{x}} \mathrm{dx}$
$=\frac{1}{2} \int\left(\frac{1}{1+\mathrm{x}^{2}}-\frac{\mathrm{x}}{1+\mathrm{x}^{2}}\right) \mathrm{dx}+\frac{1}{2}(\ln (1+\mathrm{x}))_{0}^{1}$
$=\frac{1}{2}\left[\tan ^{-1} x-\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{1}+\frac{1}{2} \ln 2$
$=\frac{1}{2}\left[\frac{\pi}{4}-\frac{1}{2} \ln 2\right]+\frac{1}{2} \ln 2$
$=\frac{\pi}{8}+\frac{1}{4} \ln 2$
8. A particle is moving in the xy-plane along a curve C passing through the point $(3,3)$. The tangent to the curve C at the point P meets the x-axis at Q. If the y-axis bisects the segment PQ , then C is a parabola with
(A) length of latus rectum 3
(B) length of latus rectum 6
(C) focus $\left(\frac{4}{3}, 0\right)$
(D) focus $\left(0, \frac{3}{4}\right)$

Official Ans. by NTA (A)

Sol. Let Point $\mathrm{P}(\mathrm{x}, \mathrm{y})$
$Y-y=y^{\prime}(X-x)$
$\mathrm{Y}=0 \Rightarrow \mathrm{X}=\mathrm{x}-\frac{\mathrm{y}}{\mathrm{y}^{\prime}}$
$\mathrm{Q}\left(\mathrm{x}-\frac{\mathrm{y}}{\mathrm{y}^{\prime}}, 0\right)$
Mid Point of PQ lies on y axis
$x-\frac{y}{y^{\prime}}+x=0$
$y^{\prime}=\frac{y}{2 \cdot x} \Rightarrow 2 \frac{d y}{y}=\frac{d x}{x}$
$2 \ell n y=\ell n x+\ell n k$
$y^{2}=k x$
It passes through $(3,3) \Rightarrow k=3$
curve $\mathrm{c} \Rightarrow \mathrm{y}^{2}=3 \mathrm{x}$
Length of L.R. $=3$
Focus $=\left(\frac{3}{4}, 0\right)$ Ans. (\mathbf{A})
9. Let the maximum area of the triangle that can be inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1, a>2$, having one of its vertices at one end of the major axis of the ellipse and one of its sides parallel to the y-axis, be $6 \sqrt{3}$. Then the eccentricity of the ellispe is :
(A) $\frac{\sqrt{3}}{2}$
(B) $\frac{1}{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) $\frac{\sqrt{3}}{4}$

Official Ans. by NTA (A)

Sol. $\quad(\operatorname{acos} \theta, 2 \sin \theta)$

$A=\frac{1}{2} a(1-\cos \theta)(4 \sin \theta)$
$\mathrm{A}=2 \mathrm{a}(1-\cos \theta) \sin \theta$
$\frac{\mathrm{dA}}{\mathrm{d} \theta}=2 \mathrm{a}\left(\sin ^{2} \theta+\cos \theta-\cos ^{2} \theta\right)$
$\frac{\mathrm{dA}}{\mathrm{d} \theta}=0 \Rightarrow 1+\cos \theta-2 \cos ^{2} \theta=0$
$\cos \theta=1$ (Reject)
OR
$\cos \theta=\frac{-1}{2} \Rightarrow \theta=\frac{2 \pi}{3}$
$\frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{~d} \theta^{2}}=2 \mathrm{a}\left(2 \sin ^{2} \theta-\sin \theta\right)$
$\frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{~d} \theta^{2}}<0$ for $\theta=\frac{2 \pi}{3}$
Now, $A_{\text {max }}=\frac{3 \sqrt{3}}{2} a=6 \sqrt{3}$
$a=4$
Now, $\mathrm{e}=\sqrt{\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}}=\frac{\sqrt{3}}{2}$ Ans. (A)
10. Let the area of the triangle with vertices $\mathrm{A}(1, \alpha)$, $B(\alpha, 0)$ and $C(0, \alpha)$ be 4 sq. units. If the point $(\alpha,-\alpha),(-\alpha, \alpha)$ and $\left(\alpha^{2}, \beta\right)$ are collinear, then β is equal to
(A) 64
(B) -8
(C) -64
(D) 512

Official Ans. by NTA (C)

Sol. $\quad \frac{1}{2}\left|\begin{array}{lll}\alpha & 0 & 1 \\ 1 & \alpha & 1 \\ 0 & \alpha & 1\end{array}\right|= \pm 4$
$\alpha= \pm 8$
Now given points $(8,-8),(-8,8),(64, \beta)$
$\operatorname{OR}(-8,8),(8,-8),(64, \beta)$
are collinear \Rightarrow Slope $=-1$.
$\beta=-64$ Ans. (C)
11. The number of distinct real roots of the equation $x^{7}-7 x-2=0$ is
(A) 5
(B) 7
(C) 1
(D) 3

Official Ans. by NTA (D)

Sol. $x^{7}-7 x-2=0$
$x^{7}-7 x=2$
$f(x)=x^{7}-7 x($ odd $) \& y=2$
$f(x)=x\left(x^{2}-7^{1 / 3}\right)\left(x^{4}+x^{2} \cdot 7^{1 / 3}+7^{2 / 3}\right)$
$f^{\prime}(x)=7\left(x^{6}-1\right)=7\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)$
$\mathrm{f}^{\prime}(\mathrm{x})=0 \Rightarrow \mathrm{x}= \pm 1$

$\mathrm{f}(\mathrm{x})=2$ has 3 real distinct solution.
12. A random variable X has the following probability distribution :

X	0	1	2	3	4
$\mathrm{P}(\mathrm{X})$	k	2 k	4 k	6 k	86

The value of $\mathrm{P}(1<\mathrm{X}<4 \mathrm{I} \mathrm{X} \leq 2)$ is equal to :
(A) $\frac{4}{7}$
(B) $\frac{2}{3}$
(C) $\frac{3}{7}$
(D) $\frac{4}{5}$

Official Ans. by NTA (A)

Sol. $\quad \mathrm{P}\left(\frac{1<\mathrm{x}<4}{\mathrm{x} \leq 2}\right)=\frac{\mathrm{P}(1<\mathrm{x}<4 \cap \mathrm{x} \leq 2)}{\mathrm{P}(\mathrm{x} \leq 2)}$
$=\frac{\mathrm{P}(1<\mathrm{x} \leq 2)}{\mathrm{P}(\mathrm{x} \leq 2)}=\frac{\mathrm{P}(\mathrm{x}=2)}{\mathrm{P}(\mathrm{x} \leq 2)}$
$=\frac{4 \mathrm{k}}{\mathrm{k}+2 \mathrm{k}+4 \mathrm{k}}=\frac{4}{7}$

Final JEE-Main Exam June, 2022/24-06-2022/Evening Session
13. The number of solutions of the equation $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x, x \in[-3 \pi$, $3 \pi]$ is :
(A) 8
(B) 5
(C) 6
(D) 7

Official Ans. by NTA (D)

Sol. $\quad \cos \left(\frac{\pi}{3}+x\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x$
$\mathrm{x} \in[-3 \pi, 3 \pi]$
$4\left(\cos ^{2}\left(\frac{\pi}{3}\right)-\sin ^{2} x\right)=\cos ^{2} 2 x$
$4\left(\frac{1}{4}-\sin ^{2} x\right)=\cos ^{2} 2 x$
$1-4 \sin ^{2} \mathrm{x}=\cos ^{2} 2 \mathrm{x}$
$1-2(1-\cos 2 x)=\cos ^{2} 2 x$
let $\cos 2 \mathrm{x}=\mathrm{t}$
$-1+2 \cos 2 x=\cos ^{2} 2 x$
$\mathrm{t}^{2}-2 \mathrm{t}+1=0$
$(\mathrm{t}-1)^{2}=0$
$\mathrm{t}=1 \quad \cos 2 \mathrm{x}=1$
$2 \mathrm{x}=2 \mathrm{n} \pi$
$\mathrm{x}=\mathrm{n} \pi$
$\mathrm{n}=-3,-2,-1,0,1,2,3$
(D) option is correct.
14. If the shortest distance between the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{\lambda}$ and $\frac{x-2}{1}=\frac{y-4}{4}=\frac{z-5}{5}$ is $\frac{1}{\sqrt{3}}$, then the sum of all possible values of λ is :
(A) 16
(B) 6
(C) 12
(D) 15

Official Ans. by NTA (A)
$\mathrm{a}_{1}=(1,2,3)$
$\mathrm{a}_{2}=(2,4,5)$
$\overrightarrow{\mathrm{b}}_{2}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\lambda \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{b}}_{2}=\hat{\mathrm{i}}+4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$
S.D. $=\frac{\left|((2-1) \hat{i}+(4-2) \hat{j}+(5-3) \hat{k}) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)\right|}{\left|b_{1} \times b_{2}\right|}$
$\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & 3 & \lambda \\ 1 & 4 & 5\end{array}\right|$
$=\hat{\mathrm{i}}(15-4 \lambda)+\hat{\mathrm{j}}(\lambda-10)+\hat{\mathrm{k}}(5)$
$=(15-4 \lambda) \hat{i}+(\lambda-10) \hat{j}+5 \hat{k}$
$\left|\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}\right|=\sqrt{(15-4 \lambda)^{2}+(\lambda-10)^{2}+25}$
Now
S.D. $=\frac{|(\hat{i}+2 \hat{j}+2 \hat{k}) \cdot[(15-4 \lambda) \hat{i}+(\lambda-10) \hat{j}+5 \hat{k}]|}{\sqrt{(15-4 \lambda)^{2}+(\lambda-10)^{2}+25}}$
$\frac{|15-4 \lambda+2 \lambda-20+10|}{\sqrt{(15-4 \lambda)^{2}+(\lambda-10)^{2}+25}}=\frac{1}{\sqrt{3}}$
square both side
$3(5-2 \lambda)^{2}=225+16 \lambda^{2}-120 \lambda+\lambda^{2}+100-20 \lambda+25$
$12 \lambda^{2}+75-60 \lambda=17 \lambda^{2}-140 \lambda+350$
$5 \lambda^{2}-80 \lambda+275=0$
$\lambda^{2}-16 \lambda+55=0$
$(\lambda-5)(\lambda-11)=0$
$\Rightarrow \lambda=5,11$
(A) is correct option.
15. Let the points on the plane P be equidistant from the points $(-4,2,1)$ and $(2,-2,3)$. Then the acute angle between the plane P and the plane $2 \mathrm{x}+\mathrm{y}+$ $3 z=1$ is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{5 \pi}{12}$

Official Ans. by NTA (C)

Sol. SHORTEST distance $\frac{\left|\left(a_{2}-a_{1}\right) \cdot\left(b_{1} \times b_{2}\right)\right|}{\left|b_{1} \times b_{2}\right|}$

Sol.

Normal vector $=\overrightarrow{\mathrm{AB}}=(\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}})$
$=(6 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
or $2(3 \hat{i}-2 \hat{j}+\hat{k})$
$P \equiv 3(x+1)-2(y)+1(z-2)=0$
$\mathrm{P} \equiv 3 \mathrm{x}-2 \mathrm{y}+\mathrm{z}+1=0$
$\mathrm{P}^{\prime} \equiv 2 \mathrm{x}+\mathrm{y}+3 \mathrm{z}-1=0$
angle between P \& $P^{\prime}=\left|\frac{\hat{n}_{1} \cdot \hat{n}_{2}}{\left|n_{1}\right|\left|n_{2}\right|}\right|=\cos \theta$
$\theta=\cos ^{-1}\left(\frac{6-2+3}{\sqrt{14} \times \sqrt{14}}\right)$
$\theta=\cos ^{-1}\left(\frac{7}{14}\right)==\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$
Option C is correct.
16. Let \hat{a} and \hat{b} be two unit vectors such that $|(\hat{a}+\hat{b})+2(\hat{a} \times \hat{b})|=2$. If $\theta \in(0, \pi)$ is the angle between \hat{a} and \hat{b}, then among the statements :
(S1) : $2|\hat{\mathrm{a}} \times \hat{\mathrm{b}}|=|\hat{\mathrm{a}}-\hat{\mathrm{b}}|$
(S2) : The projection of \hat{a} on $(\hat{a}+\hat{b})$ is $\frac{1}{2}$
(A) Only (S1) is true
(B) Only (S2) is true
(C) Both (S1) and (S2) are true
(D) Both (S1) and (S2) are false

Official Ans. by NTA (C)

Sol. $|(\hat{a}+\hat{b})+2(\hat{a} \times \hat{b})|=2, \theta \in(0, \pi)$

$$
\begin{aligned}
& ((\hat{a}+\hat{b})+2(\hat{a} \times \hat{b})) \cdot((\hat{a}+\hat{b})+2(\hat{a} \times \hat{b}))=4 \\
& |\hat{a}+\hat{b}|^{2}+4\left(\left.(\hat{a} \times \hat{b})\right|^{2}+0=4\right.
\end{aligned}
$$

Let the angle be θ between \hat{a} and \hat{b}
$2+2 \cos \theta+4 \sin ^{2} \theta=4$
$2+2 \cos \theta-4 \cos ^{2} \theta=0$
Let $\cos \theta=\mathrm{t}$ then
$2 \mathrm{t}^{2}-\mathrm{t}-1=0$
$2 \mathrm{t}^{2}-2 \mathrm{t}+\mathrm{t}-1=0$
$2 t(t-1)+(t-1)=0$
$(2 t+1)(t-1)=0$
$t=-\frac{1}{2} \quad$ or $\quad t=1$

$\cos \theta=-\frac{1}{2}$	not possible as $\theta \in(0, \pi)$
$\theta=\frac{2 \pi}{3}$	

Now,
$S_{1} \quad 2|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=2 \sin \left(\frac{2 \pi}{3}\right)$

$$
\begin{aligned}
|\hat{a}-\hat{b}| & =\sqrt{1+1-2 \cos \left(\frac{2 \pi}{3}\right)} \\
& =\sqrt{2-2 \times\left(-\frac{1}{2}\right)} \\
& =\sqrt{3}
\end{aligned}
$$

S_{1} is correct.
S_{2} projection of $\hat{\mathrm{a}}$ on $(\hat{\mathrm{a}}+\hat{\mathrm{b}})$.
$\frac{\hat{\mathrm{a}} \cdot(\hat{\mathrm{a}}+\hat{\mathrm{b}})}{|\hat{\mathrm{a}}+\hat{\mathrm{b}}|}=\frac{1+\cos \left(\frac{2 \pi}{3}\right)}{\sqrt{2+2 \cos \frac{2 \pi}{3}}}$
$=\frac{1-\frac{1}{2}}{\sqrt{1}}$
$=\frac{1}{2}$
C Option is true.
17. If $y=\tan ^{-1}\left(\sec x^{3}-\tan x^{3}\right) . \frac{\pi}{2}<x^{3}<\frac{3 \pi}{2}$, then
(A) $x y^{\prime \prime}+2 y^{\prime}=0$
(B) $x^{2} y^{\prime \prime}-6 y+\frac{3 \pi}{2}=0$
(C) $x^{2} y^{\prime \prime}-6 y+3 \pi=0$
(D) $x y^{\prime \prime}-4 y^{\prime}=0$

Official Ans. by NTA (B)

Sol. $y=\tan ^{-1}\left(\sec x^{3}-\tan x^{3}\right)$
$=\tan ^{-1}\left(\frac{1-\sin x^{3}}{\cos x^{3}}\right)$
$=\tan ^{-1}\left(\frac{1-\cos \left(\frac{\pi}{2}-x^{3}\right)}{\sin \left(\frac{\pi}{2}-x^{3}\right)}\right)$
$=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}-\frac{x^{3}}{2}\right)\right)$
Since $\frac{\pi}{4}-\frac{x^{3}}{2} \in\left(-\frac{\pi}{2}, 0\right)$
$y=\left(\frac{\pi}{4}-\frac{x^{3}}{2}\right)$
$y^{\prime}=\frac{-3 x^{2}}{2}, y^{\prime \prime}=-3 x$
$4 y=\pi-2 x^{3}$
$4 y=\pi-2 x^{2}\left(\frac{-y^{\prime \prime}}{3}\right)$
$12 y=3 \pi+2 x^{2} y^{\prime \prime}$
$x^{2} y^{\prime \prime}-6 y+\frac{3 \pi}{2}=0$
18. Consider the following statements :

A : Rishi is a judge.
B : Rishi is honest.
C : Rishi is not arrogant.
The negation of the statement "if Rishi is a judge and he is not arrogant, then he is honest" is
(A) $\mathrm{B} \rightarrow(\mathrm{A} \vee \mathrm{C})$
(B) $(\sim B) \wedge(A \wedge C)$
(C) $\mathrm{B} \rightarrow((\sim \mathrm{A}) \vee(\sim \mathrm{C}))$
(D) $\mathrm{B} \rightarrow(\mathrm{A} \wedge \mathrm{C})$

Official Ans. by NTA (B)

Sol. $\quad \sim((\mathrm{A} \wedge \mathrm{C}) \rightarrow \mathrm{B})$
$\sim(\sim(\mathrm{A} \wedge \mathrm{C}) \vee \mathrm{B})$
Using De-Morgan's law
$(\mathrm{A} \wedge \mathrm{C}) \wedge(\sim \mathrm{B})$

Option B is correct.
19. The slope of normal at any point (x, y), $x>0, y>0$ on the curve $y=y(x)$ is given by $\frac{x^{2}}{x y-x^{2} y^{2}-1}$.
If the curve passes through the point $(1,1)$, then e.y(e) is equal to
(A) $\frac{1-\tan (1)}{1+\tan (1)}$
(B) $\tan (1)$
(C) 1
(D) $\frac{1+\tan (1)}{1-\tan (1)}$

Official Ans. by NTA (D)

Sol. Slope of normal $=\frac{-d x}{d y}=\frac{x^{2}}{x y-x^{2} y^{2}-1}$
$x^{2} y^{2} d x+d x-x y d x=x^{2} d y$
$x^{2} y^{2} d x+d x=x^{2} d y+x y d x$
$x^{2} y^{2} d x+d x=x(x d y+y d x)$
$x^{2} y^{2} d x+d x=x d(x y)$
$\frac{d x}{x}=\frac{d(x y)}{1+x^{2} y^{2}}$
$\ln \mathrm{kx}=\tan ^{-1}(\mathrm{xy})$
passes though $(1,1)$
$\ln \mathrm{k}=\frac{\pi}{4} \Rightarrow \mathrm{k}=\mathrm{e}^{\frac{\pi}{4}}$
equation (i) be becomes
$\frac{\pi}{4}+\ln x=\tan ^{-1}(x y)$
$x y=\tan \left(\frac{\pi}{4}+\ln x\right)$
$x y=\left(\frac{1+\tan (\ell \ln x)}{1-\tan (\ell n x)}\right)$
put $x=e$ in (ii)
\therefore ey $(e)=\frac{1+\tan 1}{1-\tan 1}$
20. Let λ^{*} be the largest value of λ for which the function $f_{\lambda}(x)=4 \lambda x^{3}-36 \lambda x^{2}+36 x+48$ is increasing for all $x \in R$. Then $\mathrm{f}_{\lambda} *(1)+\mathrm{f}_{\lambda} *(-1)$ is equal to :
(A) 36
(B) 48
(C) 64
(D) 72

Official Ans. by NTA (D)

Sol. $\quad f_{\lambda}(x)=4 \lambda x^{3}-36 \lambda x^{2}+36 x+48$
$\mathrm{f}_{\lambda}{ }^{\prime}(\mathrm{x})=12 \lambda \mathrm{x}^{2}-72 \lambda \mathrm{x}+36$
$\mathrm{f}_{\lambda}{ }^{\prime}(\mathrm{x})=12\left(\lambda \mathrm{x}^{2}-6 \lambda \mathrm{x}+3\right) \geq 0$
$\therefore \lambda>0 \& D \leq 0$
$36 \lambda^{2}-4 \times \lambda \times 3 \leq 0$
$9 \lambda^{2}-3 \lambda \leq 0$
$3 \lambda(3 \lambda-1) \leq 0$
$\lambda \in\left[0, \frac{1}{3}\right]$
$\therefore \lambda_{\text {largest }}=\frac{1}{3}$
$f(x)=\frac{4}{3} x^{3}-12 x^{2}+36 x+48$
$\therefore \mathrm{f}(1)+\mathrm{f}(1)=72$

SECTION-B

1. Let $S=\{z \in \mathbb{C}:|z-3| \leq 1$ and $z(4+3 i)+\bar{z}(4-3 i) \leq 24\}$.

If $\alpha+i \beta$ is the point in S which is closest to 4 i , then $25(\alpha+\beta)$ is equal to \qquad —.

Official Ans. by NTA (80)

Sol. $|z-3| \leq 1$
represent pt . i / s circle of radius $1 \&$ centred at $(3,0)$
$\mathrm{z}(4+3 \mathrm{i})+\overline{\mathrm{Z}}(4-3 \mathrm{i}) \leq 24$
$(x+i y)(4+3 i)+(x-i y)(4-3 i) \leq 24$
$4 x+3 x i+4 i y-3 y+4 x-3 i x-4 i y-3 y \leq 24$
$8 x-6 y \leq 24$
$4 x-3 y \leq 12$

minimum of $(0,4)$ from circle $=\sqrt{3^{2}+4^{2}}-1=4$ will lie along line joining $(0,4) \&(3,0)$
\therefore equation line
$\frac{x}{3}+\frac{y}{4}=1 \Rightarrow 4 x+3 y=12$
equation circle $(x-3)^{2}+y^{2}=1$
$\left(\frac{12-3 y}{4}-3\right)^{2}+y^{2}=1$

Final JEE-Main Exam June, 2022/24-06-2022/Evening Session
$\left(\frac{-3 y}{4}\right)^{2}+y^{2}=1$
$\frac{25 y^{2}}{16}=1 \Rightarrow y= \pm \frac{4}{5}$
for minimum distance $y=\frac{4}{5}$
$\therefore \mathrm{x}=\frac{12}{5}$
$\therefore 25(\alpha+\beta)=25\left(\frac{4}{5}+\frac{12}{5}\right)$
$=16 \times 5=80$
2. Let $\mathrm{S}=\left\{\left(\begin{array}{cc}-1 & \mathrm{a} \\ 0 & \mathrm{~b}\end{array}\right) ; \mathrm{a}, \mathrm{b} \in\{1,2,3, \ldots 100\}\right\}$ and let $T_{n}=\left\{A \in S: A^{n(n+1)}=I\right\}$. Then the number of elements in $\bigcap_{n=1}^{100} T_{n}$ is \qquad .

Official Ans. by NTA (100)

Sol. $A=\left[\begin{array}{cc}-1 & \mathrm{a} \\ 0 & \mathrm{~b}\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right]\left[\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right]$
$=\left[\begin{array}{cc}1 & -a+a b \\ 0 & b^{2}\end{array}\right]$
$\therefore \mathrm{T}_{\mathrm{n}}=\left\{\mathrm{A} \in \mathrm{S} ; \mathrm{A}^{\mathrm{n}(\mathrm{n}+1)}=\mathrm{I}\right\}$
$\therefore \mathrm{b}$ must be equal to 1
\therefore In this case A^{2} will become identity matrix and a can take any value from 1 to 100
\therefore Total number of common element will be 100 .
3. The number of 7-digit numbers which are multiples of 11 and are formed using all the digits $1,2,3,4,5,7$ and 9 is \qquad —.

Official Ans. by NTA (576)

Sol. Digits are 1, 2, 3, 4, 5, 7, 9
Multiple of $11 \rightarrow$ Difference of sum at even $\&$ odd place is divisible by 11 .
Let number of the form abcdefg
$\therefore(\mathrm{a}+\mathrm{c}+\mathrm{e}+\mathrm{g})-(\mathrm{b}+\mathrm{d}+\mathrm{f})=11 \mathrm{x}$
$a+b+c+d+e+f=31$
\therefore either $\mathrm{a}+\mathrm{c}+\mathrm{e}+\mathrm{g}=21$ or 10
$\therefore \mathrm{b}+\mathrm{d}+\mathrm{f}=10$ or 21

Case- 1

$a+c+e+g=21$
$b+d+f=10$
$(\mathrm{b}, \mathrm{d}, \mathrm{f}) \in\{(1,2,7)(2,3,5)(1,4,5)\}$
$(\mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}) \in\{(1,4,7,9),(3,4,5,9),(2,3,7,9)\}$
\therefore Total number in case- $1=(3!\times 3)(4!)=432$
Case- 2
$a+c+e+g=10$
$b+d+f=21$
$(\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{g}) \in\{1,2,3,4)\}$
$(b, d, f) \&\{(5,7,9)\}$
\therefore Total number in case $2=3!\times 4!=144$
\therefore Total numbers $=144+432=576$
4. The sum of all the elements of the set $\{\alpha \in\{1,2, \ldots, 100\}: \operatorname{HCF}(\alpha, 24)=1\}$ is \qquad -.

Official Ans. by NTA (1633)

Sol. $\operatorname{HCF}(\alpha, 24)=1$
Now, $24=2^{2} .3$
$\rightarrow \alpha$ is not the multiple of 2 or 3
Sum of values of α
$=S(\mathrm{U})-\{\mathrm{S}($ multiple of 2$)+\mathrm{S}$ (multiple of 3)
$-S($ multiple of 6$)\}$
$=(1+2+3+\ldots \ldots 100)-(2+4+6 \ldots . .+100)-(3$
$+6+\ldots . .99)+(6+12+\ldots . .+96)$
$=\frac{100 \times 101}{2}-50 \times 51-\frac{33}{2} \times(3+99)+\frac{16}{2}(6+96)$
$=5050-2550-1683+816=1633$ Ans.
5. The remainder on dividing $1+3+3^{2}+3^{3}+\ldots+3^{2021}$ by 50 is \qquad -.

Official Ans. by NTA (4)

Sol. $\frac{1 .\left(3^{2022}-1\right)}{2}=\frac{9^{1011}-1}{2}$
$=\frac{(10-1)^{1011}-1}{2}$
$=\frac{100 \lambda+10110-1-1}{2}$
$=50 \lambda+\frac{10108}{2}$
$=50 \lambda+5054$
$=50 \lambda+50 \times 101+4$
$\operatorname{Rem}(50)=4$.
6. The area (in sq. units) of the region enclosed between the parabola $y^{2}=2 x$ and the line $x+y=4$ is \qquad _.

Official Ans. by NTA (18)

Sol. $\mathrm{x}=4-\mathrm{y}$
$y^{2}=2(4-y)$
$y^{2}=8-2 y$
$y^{2}+2 y-8=0$
$y=-4, y=2$
$x=8, x=2$

$\int_{-4}^{2}\left[(4-y)-\frac{y^{2}}{2}\right] d y$
$=\left[4 y-\frac{y^{2}}{2}-\frac{y^{3}}{6}\right]_{-4}^{2}$
$=8-2-\frac{8}{6}+16+\frac{16}{2}-\frac{64}{6}$
$=22+8-\frac{72}{6}$
$=30-12=18$
7. Let a circle $C:(x-h)^{2}+(y-k)^{2}=r^{2}, k>0$, touch the x-axis at $(1,0)$. If the line $x+y=0$ intersects the
circle C at P and Q such that the length of the chord $P Q$ is 2 , then the value of $h+k+r$ is equal to \qquad _.

Official Ans. by NTA (7)

Sol. $k=r$
$\mathrm{h}=1$
$\mathrm{OP}=\mathrm{r}, \mathrm{PR}=1$
$\mathrm{OR}=\left|\frac{\mathrm{r}+1}{\sqrt{2}}\right|$

$\mathrm{r}^{2}=1+\frac{(\mathrm{r}+1)^{2}}{2}$
$2 r^{2}=2+r^{2}+1+2 r$
$\mathrm{r}^{2}-2 \mathrm{r}-3=0$
$(r-3)(r+1)=0$
$\mathrm{r}=3,-1$
$\mathrm{h}+\mathrm{k}+\mathrm{r}=1+3+3$
$=7$
8. In an examination, there are 10 true-false type questions. Out of 10 , a student can guess the answer of 4 questions correctly with probability $\frac{3}{4}$ and the remaining 6 questions correctly with probability $\frac{1}{4}$.

If the probability that the student guesses the answers of exactly 8 questions correctly out of 10 is $\frac{27 \mathrm{k}}{4^{10}}$, then k is equal to \qquad -

Official Ans. by NTA (479)

Sol. $\mathrm{A}=\{1,2,3,4\}: \mathrm{P}(\mathrm{A})=\frac{3}{4} \rightarrow$ Correct
$B=\{5,6,7,8,9,10\} ; P(B)=\frac{1}{4}$ Correct
8 Correct Ans.:
$(4,4):{ }^{4} \mathrm{C}_{4}\left(\frac{3}{4}\right)^{4} \cdot{ }^{6} \mathrm{C}_{4} \cdot\left(\frac{1}{4}\right)^{4} \cdot\left(\frac{3}{4}\right)^{2}$
$(3,5):{ }^{4} \mathrm{C}_{3}\left(\frac{3}{4}\right)^{3} \cdot\left(\frac{1}{4}\right)^{1} \cdot{ }^{6} \mathrm{C}_{5}\left(\frac{1}{4}\right)^{5} \cdot\left(\frac{3}{4}\right)$
$(2,6):{ }^{4} \mathrm{C}_{2}\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}\right)^{2} \cdot{ }^{6} \mathrm{C}_{6}\left(\frac{1}{4}\right)^{6}$
Total $=\frac{1}{4^{10}}\left[3^{4} \times 15 \times 3^{2}+4 \times 3^{3} \times 6 \times 3+6 \times 3^{2}\right]$
$=\frac{27}{4^{10}}[2.7 \times 15+72+2]$
$\Rightarrow \mathrm{K}=479$
9. Let the hyperbola $H: \frac{x^{2}}{a^{2}}-y^{2}=1$ and the ellipse
$E: 3 x^{2}+4 y^{2}=12$ be such that the length of latus rectum of H is equal to the length of latus rectum of E. If e_{H} and e_{E} are the eccentricities of H and E respectively, then the value of $12\left(\mathrm{e}_{\mathrm{H}}^{2}+\mathrm{e}_{\mathrm{E}}^{2}\right)$ is equal to \qquad -.

Official Ans. by NTA (42)

Sol. $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{1}=1 \quad \frac{\mathrm{x}^{2}}{4}+\frac{\mathrm{y}^{2}}{3}=1$
$e_{H}=\sqrt{1+\frac{1}{a^{2}}} \quad e_{E}=\sqrt{1-\frac{3}{4}}=\frac{1}{2}$
$\ell . R .=\frac{2}{\mathrm{a}} \quad \ell \mathrm{R}=\frac{2 \times 3}{2}=3$
$\frac{2}{a}=3$
$a=\frac{2}{3}$
$\mathrm{e}_{\mathrm{H}}=\sqrt{1+\frac{9}{4}}=\frac{\sqrt{13}}{2}$
$12\left(\mathrm{e}_{\mathrm{H}}^{2}+\mathrm{e}_{\mathrm{E}}^{2}\right)=12\left(\frac{13}{4}+\frac{1}{4}\right)$
$=\frac{12 \times 14}{4}=42$
10. Let P_{1} be a parabola with vertex $(3,2)$ and focus $(4,4)$ and P_{2} be its mirror image with respect to the line $x+2 y=6$. Then the directrix of P_{2} is $x+2 y=$ \qquad .

Official Ans. by NTA (10)

Sol.

P_{1} : Directorix :
$x+2 y=k$
$x+2 y-k=0$
$\left|\frac{3+4-K}{\sqrt{5}}\right|=\sqrt{5}$
$|7-k|=5$
$7-K=5 \quad 7-K=-5$
$\mathrm{k}=2 \quad \mathrm{k}=12$
Accepted Rejected
Passes through
focus
$\left.\begin{array}{l}D_{1}=x+2 y=2 \\ \ell=x+2 y=6 \\ D_{2}=x+2 y=c\end{array}\right] \Rightarrow d \Rightarrow d y$

