JEE-Main-20-07-2021-Shift-2 (Memory Based)

PHYSICS

Question: In a series LCR circuit, $R = 5\Omega$, L = 0.5 mH, $C = 2.5 \mu$ F. The RMS value of external voltage is 250 V. Find the power dissipated if circuit is in Resonance **Answer:** 12500 W **Solution:**

Power = $V_{rms}I_{rms}\left(\frac{R}{Z}\right)$ Z = R (at resonance) Power = $250 \times \frac{250}{5} \times \frac{5}{5}$ = 12500 W

Question: The wavelength of sodium lamp is observed to be 2886 Å from earth & original wavelength was 2880 Å. Find speed of galaxy.

Options:

(a) $3 \times 10^5 \text{ m s}^{-1}$ (b) $4 \times 10^5 \text{ m s}^{-1}$ (c) $6.25 \times 10^5 \text{ m s}^{-1}$ (d) None **Answer:** (c) **Solution:** $\Delta \lambda = 2886 - 2880 = 6\text{\AA}$

Using doppler shift,

$$-\frac{\Delta\lambda}{\lambda} = -\frac{V_{\text{radial}}}{C}$$
$$\Rightarrow V_{\text{radial}} = C\left(\frac{\Delta\lambda}{\lambda}\right) = 3 \times 10^8 \times \left(\frac{6 \times 10^{-10}}{2880 \times 10^{-10}}\right)$$
$$= 6.25 \times 10^5 \text{ ms}^{-1}$$

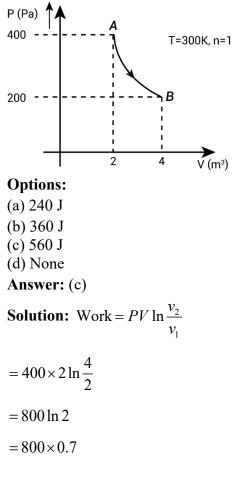
Hence, speed of galaxy = $6.25 \times 10^5 \text{ ms}^{-1}$.

Question: A body is under the influence of a force such that it delivers a constant power P. The variation of position with time of body as

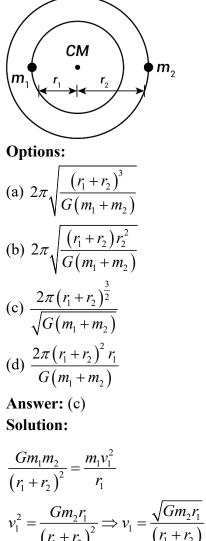
Options: (a) $t^{\frac{1}{2}}$ (b) $t^{\frac{3}{2}}$ (c) $t^{\frac{5}{2}}$ (d) None Answer: (b) **Solution:** Power = P F v = P $m\left(\frac{dv}{dt}\right) \cdot v = P$ $\Rightarrow \int_{0}^{v} v \, dv = \int_{0}^{t} \frac{P}{m} \cdot dt$ $\Rightarrow v = \sqrt{\frac{2P}{m}t}$ $\Rightarrow \frac{dx}{dt} = \sqrt{\frac{2P}{m}t} \text{ [assuming at } t = 0, x = 0 \text{ \& } v = 0\text{]}$ $\Rightarrow \int_{0}^{x} dx = \int_{0}^{t} \sqrt{\frac{2P}{m}t} \cdot dt$ $\Rightarrow t = x = \sqrt{\frac{2P}{m}} \frac{2}{3} t^{3/2}$ $\Rightarrow x \propto t^{3/2}$

Question: When a metal is illuminated by light of wavelength λ , the stopping potential is V_0 and for wavelength 2λ , it is $3V_0$. Then the threshold wavelength is?

Options:


(a) $\frac{2\lambda}{3}$ (b) $\frac{4\lambda}{5}$ (c) $\frac{\lambda}{3}$ (d) $\frac{5\lambda}{2}$ Answer: (b) Solution: $eV_0 = \frac{hc}{\lambda} - \phi...(1)$

$$3eV_0 = \frac{hc}{2\lambda} - \phi...(2)$$


Multiply by 3 in equation (1)

 $3eV = \frac{3hc}{\lambda} - 3\phi...(3)$ Equation (3) – (2) $\frac{3hc}{\lambda} - \frac{hc}{2\lambda} - 2\phi = 0$ $\frac{5hc}{2\lambda} = 2\phi = \frac{2hc}{\lambda_0}$ $\frac{5}{4}\frac{hc}{\lambda} = \frac{hc}{\lambda_0}$ $\lambda_0 = \frac{4\lambda}{5}$

Question: A gas is taken through an isothermal process as shown. Find the work done by the gas

Question: Two stars of masses m_1 and m_2 form a binary system, revolving around each other in circular orbits of radii r_1 and r_2 respectively. Time period of revolution for this system is

$$T = \frac{2\pi r_1}{v_1} = \frac{2\pi \sqrt{r_1} (r_1 + r_2)}{\sqrt{Gm_2}} \quad \dots(1)$$

By using COM concept.

$$r_1 = \frac{m_2 (r_1 + r_2)}{m_1 + m_2}$$

Put this value of r_1 in $eq^n(1)$ We get

$$T = \frac{2\pi (r_1 + r_2)^{3/2}}{\sqrt{G(m_1 + m_2)}}$$

Question: Tension in a spring is T_1 when length of the spring is L_1 and tension is T_2 when its length is L_2 . The natural length of the spring is

Options:

(a)
$$\frac{T_2 l_2 + T_1 l_1}{T_2 + T_1}$$

(b)
$$\frac{T_2 l_2 - T_1 l_1}{T_2 - T_1}$$

(c)
$$\frac{T_2 l_1 + T_1 l_2}{T_2 + T_1}$$

(d)
$$\frac{T_2 l_1 - T_1 l_2}{T_2 - T_1}$$

Answer: (d) Solution:

Let the natural length of wire be l_0 .

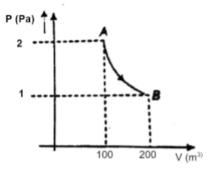
Using Hooke's law, $Y = \frac{Tl_0}{A\Delta l}$

Where, $\Delta l = l - l_0$

We get $l - l_0 = \frac{T l_0}{AY}$

Case 1: Tension is T_1 and length of wire $l = l_1$

$$\therefore l_1 - l_0 = \frac{T_1 l_0}{AY} \quad \dots (1)$$


Case 2: Tension is T₂ and length of wire $l = l_2$

$$\therefore l_2 - l_0 = \frac{T_2 l_0}{AY} \quad \dots (2)$$

Dividing both equations

$$\frac{l_1 - l_0}{l_2 - l_0} = \frac{T_1}{T_2}$$
$$l_0 = \frac{l_1 T_2 - l_2 T_2}{T_2 - T_1}$$

Question: Find work done in the process $A \rightarrow B$ (isothermal) by gas?

Options:

(a) 100 ln 2

(b) -100 ln 2 (c) 200 ln 2

(d) $-200 \ln 2$

Answer: (c)

Solution:

Work done by gas in isothermal process is $\Rightarrow W = nRT \ln \left(\frac{V_2}{V_1}\right)$

$$W = P_1 V_1 \ln\left(\frac{V_2}{V_1}\right)$$
$$W = 2 \times 100 \ln\left(\frac{200}{100}\right)$$
$$W_{gas} = 200 \ln 2$$

Question: A body rotating have an angular velocity of 300 rpm and its angular acceleration

is $\frac{\pi}{20}(rad/s^2)$. Resolutions done by this body in 10 sec is

Options:

(a) $\frac{205}{4}(rev)$ (b) $\frac{307}{3}(rev)$ (c) 75(rev)(d) $\frac{189}{2}(rev)$

Answer: (a) Solution:

 $\omega = 300 \, rpm = 300 \times \frac{2\pi}{60} = 10 \, \pi \, rad \, / \sec \theta$

$$\alpha = \frac{\pi}{20} rad / s^{2}$$

$$\theta = \omega T + \frac{1}{2} \alpha T^{2}$$

$$\theta = 10\pi \times 10 + \frac{1}{2} \times \frac{\pi}{20} \times (10)^{2} = 102.5 \pi rad$$

$$\theta = \frac{102.5 \pi}{2\pi} rev = \frac{205}{4} rev$$

Question: A boy at the airport takes time t_1 to walk on escalator if the escalator is at rest and takes time t_2 if boy is at rest on moving escalator. Then find the time taken to walk on the escalator for same path?

Options:

(a) $|t_1 - t_2|$ (b) $\frac{t_1 + t_2}{2}$ (c) $\frac{2t_1t_2}{t_1 + t_2}$ (d) $\frac{t_1t_2}{t_1 + t_2}$

Answer: (d)

Solution:

Let distance to be traversed = x

Speed of escalator $=\frac{x}{t_1}$ Speed of boy walking $=\frac{x}{t_2}$

When the boy is walking on a moving escalator, speed is $= x \left(\frac{1}{t_2} + \frac{1}{t_1}\right) = x \left(\frac{t_1 + t_2}{t_1 t_2}\right)$

Time taken is distance by speed $=\frac{x}{v} = \frac{t_1 t_2}{t_1 + t_2}$

$$T = \frac{t_1 t_2}{t_1 + t_2}$$

Question: A particle is performing SHM along x-axis, such that its velocity is v_1 , when its displacement from mean position is x_1 and v_2 when its displacement from mean position is x_2 . Time period of oscillation is **Options:**

(a)
$$\frac{1}{2\pi} \sqrt{\frac{x_2 - x_1}{(v_1 - v_2)}}$$

(b) $2\pi \sqrt{\frac{(x_1^2 + x_2^2)}{(v_2^2 + v_1^2)}}$
(c) $2\pi \sqrt{\frac{(x_2^2 - x_1^2)}{(v_1^2 - v_2^2)}}$
(d) $2\pi \sqrt{\frac{(x_1 x_2 - x_1^2)}{(v_1 v_2 - v_1^2)}}$

Answer: (c) Solution:

$$v = \omega \sqrt{A^2 - x^2}$$

$$v_1 = \omega \sqrt{A^2 - x_1^2}$$

$$\Rightarrow v_1^2 = \omega^2 \left(A^2 - x_1^2\right) \qquad \dots (i)$$

$$v_2 = \omega \sqrt{A^2 - x_2^2}$$

$$v_2^2 = \omega^2 \left(A^2 - x_2^2\right)$$

$$\Rightarrow \left(\frac{v_1^2}{\omega^2} + x_2^2\right) = A^2 \qquad \dots (ii)$$

From (i) and (ii)

$$v_{1}^{2} = \omega^{2} \left(\frac{v_{2}^{2}}{\omega^{2}} + x_{2}^{2} - x_{1}^{2} \right)$$
$$v_{1}^{2} = v_{2}^{2} + \omega^{2} \left(x_{2}^{2} - x_{1}^{2} \right)$$
$$\Rightarrow \omega^{2} = \frac{v_{1}^{2} - v_{2}^{2}}{x_{2}^{2} - x_{1}^{2}}$$
$$\Rightarrow \omega = \sqrt{\frac{v_{1}^{2} - v_{2}^{2}}{x_{2}^{2} - x_{1}^{2}}}$$

We know that

$$T = \frac{2\pi}{\omega}$$
$$\Rightarrow T = 2\pi \sqrt{\frac{x_2^2 - x_1^2}{v_1^2 - v_2^2}}$$

Question: An electron $(9 \times 10^{-31} kg, 1.6 \times 10^{-19} C)$ is accelerated by a voltage of 40 kV. What is the wavelength? $h = 6.6 \times 10^{-34}$ SI units.

Answer: 6.15×10^{-12}

Solution:

$$\begin{split} \lambda &= \frac{h}{\sqrt{2M_e eV}} \\ \lambda &= \frac{6.6 \times 10^{-34}}{\sqrt{2 \times 9 \times 10^{-31} \times 1.6 \times 10^{-19} \times 40 \times 10^3}} \\ \lambda &= \frac{6.6 \times 10^{-34}}{\sqrt{1152 \times 10^{-34}}} \\ \lambda &= 0.615 \times 10^{-34+23} \\ \lambda &= 6.15 \times 10^{-12} \ m \end{split}$$

Question: For a medium, the magnetic susceptibility is 499. The permeability of free space is $4\pi \times 10^{-7}$ SI units. Then the permeability of the medium is?

Options:

(a)
$$2\pi \times 10^{-4}$$
 SI units
(b) $2\pi \times 10^{-7}$ SI units
(c) $\frac{5\pi}{4} \times 10^{-7}$ SI units
(d) $\frac{4\pi}{5} \times 10^{-4}$ SI units
Answer: (a)
Solution:
 $\chi_M = \mu_r - 1$
 $\mu_r = 499 + 1 = 500$
We know that
 $\mu = \mu_r \mu_0$
 $\mu = 500 \times 4\pi \times 10^{-7}$
 $\mu = 2\pi \times 10^{-4}$ SI units

Question: A particle has 4 times its initial kinetic energy. Find the percentage change in momentum?

Options:

- (a) 100%
- (b) 200% (c) 300%
- (d) 400%

Answer: (a)

Solution:

Initial K.E. = k
Final K.E. = 4k

$$k = \frac{P^2}{2m}$$

 $\Rightarrow P = \sqrt{2mk}$
 $\Delta P = \sqrt{2m(4k)} - \sqrt{2mk}$
 $= 2\sqrt{2mk} - \sqrt{2mk}$
 $= \sqrt{2mk}$
% change $= \frac{\Delta P}{P} \times 100 = \frac{\sqrt{2mk}}{\sqrt{2mk}} \times 100 = 100\%$

Question: Electrons with de-Broglie wavelength λ , fall on a target in an x-ray tube. The cutoff wavelength of emitted x-ray is

Options:

(a) $\frac{2mc\lambda^2}{h}$ (b) $\frac{2h}{mc}$ (c) $\frac{h}{mc}$ (d) None **Answer:** (a) **Solution:** de-Broglie wavelength = λ

$$\Rightarrow mv = \frac{n}{\lambda}$$
$$\Rightarrow \frac{1}{2}mv^2 = \left(\frac{h}{\lambda}\right)^2 \times \frac{1}{2m}$$

Energy of corresponding to cut-off wavelength is equal to

$$\frac{hc}{\lambda_0} = \frac{1}{2}mv^2 = \frac{h^2}{\lambda^2} \times \frac{1}{2m}$$
$$\Rightarrow \lambda_0 = \frac{\lambda^2(2m)c}{w}$$

Hence, cut-off wavelength = $\frac{2mc\lambda^2}{h}$

Question: An element has $\frac{1}{16}^{\text{th}}$ of initial activity in 20 sec. Half life of the nuclei is

Options:

(a) 5 sec (b) $\frac{4}{3}$ sec (c) 2.5 sec (d) 7.5 sec Answer: (a) Solution: $N = N_0 e^{-\lambda t}$ $\Rightarrow \frac{N_0}{16} = N_0 e^{-\lambda t}$ $\Rightarrow 2^{-4} = e^{-\lambda t}$ $\Rightarrow -4 \ln 2 = -\lambda t$ $\Rightarrow -4 \frac{\ln 2}{\lambda} = -t$ $\Rightarrow t = 4\left(\frac{\ln 2}{\lambda}\right) = 4 \times t_{1/2}$ $\Rightarrow t_{1/2} = 5 \text{ sec}$.

Question: A solid cylinder and ring are released from rest in top of inclined plane. Find ratio of their velocities when they reach bottom, assuming pure rolling **Options:**

(a)
$$\sqrt{\frac{3}{5}}$$

(b) $\sqrt{\frac{5}{3}}$
(c) $\sqrt{\frac{7}{5}}$
(d) $\sqrt{\frac{4}{3}}$

Answer: (d) **Solution:** Loss in PE in gain in K.E

$$\Rightarrow mgh = \frac{1}{2}mv^{2} + \frac{1}{2}I\frac{v^{2}}{R^{2}}$$
$$\Rightarrow v = \sqrt{\frac{2mgh}{m + \frac{I}{R^{2}}}}$$

$$\Rightarrow v_{cylinder} = \sqrt{\frac{2mgh}{m + \frac{mR^2}{2R^2}}} = \sqrt{\frac{4gh}{3}} \text{ and } v_{ring} = \sqrt{\frac{2mgh}{m + \frac{mR^2}{R^2}}} = \sqrt{gh}$$
$$\Rightarrow \frac{v_{cylinder}}{v_{ring}} = \sqrt{\frac{4}{3}}$$

Question: The angle of Dip in a plane at an angle of 30° with Geographical meridian is 45°. The value of true Dip is **Ontions:**

(a)
$$\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

(b) $\tan^{-1}\left(\frac{1}{2}\right)$
(c) 30°
(d) 60°
Answer: (a)
Solution:
Angle of dip
 $\tan \theta = \frac{V}{H}$...(1)
For 30 to meridian
 $\tan 45^\circ = \frac{V}{H \cos 30^\circ} \Rightarrow \frac{V}{H} = \cos 30^\circ$...(2)
 $\tan \theta = \cos 30^\circ$ (By comparing)
 $\tan \theta = \frac{\sqrt{3}}{2}$
 $\theta = \tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$

JEE-Main-20-07-2021-Shift-2 (Memory Based)

CHEMISTRY

Question: Which gas retard the rate of photosynthesis? **Options:**

(a) CO (b) NO₂

(c) CO_2

(d) CFC

Answer: (b)

Solution: Higher concentration of NO₂ damage the leaves of plants and retard the rate of photosynthesis

Question: Sodium will not react normally with

Options:

(a) Ammonia gas
(b) Ethyne
(c) But-2-yne
(d) All of these
Answer: (c)
Solution: Sodium will not react with But-2-yne

Question: The hybridisation of NO $_2^-$, NO $_2^+$ and NH $_4^+$ are respectively

Options:

(a) sp^2 , sp, sp^3 (b) sp, sp, sp^3 (c) sp^2 , sp, sp(d) sp^2 , sp^2 , sp^3 **Answer:** (a) **Solution:** Hybridisation of N in NO $_2^- = sp^2$ Hybridisation of N in NO $_2^+ = sp$ Hybridisation of N in NH $_4^+ = sp^3$

Question: What is added with HNO₃ in carius method? **Options:** (a) Silver nitrate

- (b) Copper nitrate
- (c) Copper sulphate
- (d) None of these
- Answer: (a)

Solution: In the Carius method, a known mass of the compound is heated with concentration nitric acid in the presence of silver nitrate in a hard glass tube. The hard glass is known as Carius tube.

Question: 4s² 4p¹: Diagonally next period in p-block. Identify element **Options:**

(a) Al
(b) Sb
(c) Cd
(d) Sn
Answer: (d)
Solution: Ga has electronic configuration 4s² 4p¹
Sn is present diagonally to Ga in the next period in p-block.

Question: Cu²⁺ salts reacts with KI and forms:

Options:

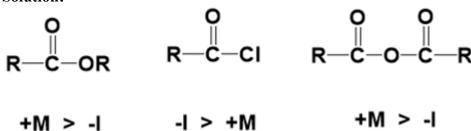
(a) Cu₂I₂ (b) CuI (c) CuI₂ (d) None of these Answer: (a) Solution: $2Cu^{2+} + 4I^{-} \rightarrow Cu_{2}I_{2} + I_{2} \uparrow$

Question: In nitration, HNO₃ and H₂SO₄ act as: **Options:**

(a) Both acid
(b) Both base
(c) HNO₃ : Acid & H₂SO₄ : Base
(d) HNO₃ : Base & H₂SO₄ : Acid

Answer: (d)

Solution: Nitration is an electrophilic substitution reaction, in its first step HNO_3 takes a proton from sulphuric acid and then forms $-NO_2^+$.


So, in the nitrating mixture HNO3 acts as a base, and H2SO4 acts as an acid.

Question: The common monomer present in novolac and bakelite is:

Options:

(a) Acetaldehyde
(b) Methanal
(c) Phenol
(d) Ethylene glycol
Answer: (b)
Solution: Formaldehyde (Methanal) is the common monomer that is present in both novolac and bakelite.

Question: Rate of hydrolysis : Ester, Acid chloride, Acid anhydride **Options:** (a) Acid chloride > Acid anhydride > Ester (b) Ester > Acid chloride > Acid anhydride
(c) Acid anhydride > Ester > Acid chloride
(d) Acid chloride < Acid anhydride < Ester
Answer: (a)
Solution:

Question: What is the difference in the number of unpaired electrons in $[\rm NiCl4]^{2-}$ and $[\rm Ni(CN)4]^{2-}$

Options: (a) 4 (b) 1 (c) 0 (d) 2 Answer: (d) Solution: $[Ni(CN)_4]^{2-}$ Ni(Z = 28) \Rightarrow 3d⁸ 4s² Ni²⁺ = 3d⁸ 3d 4p 4s 11 11 11 3d 4p 4s 11111 Unpaired electrons = 0 $[NiCN_4]^{2-}$ $Ni^{2+} = [Ar] 3d^8$ 3d 4s 4p 11 11 11 1 1 Unpaired electrons = 2

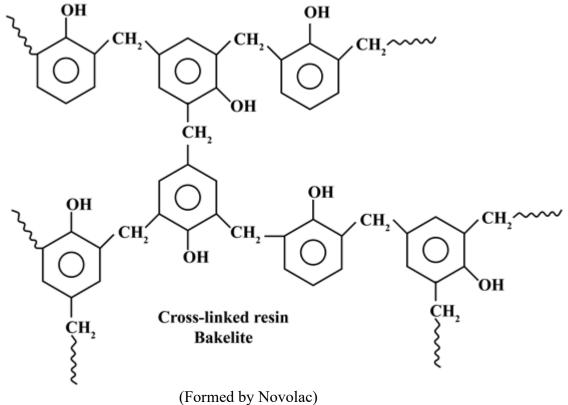
Difference between unpaired electrons = 2

Question: Radioactive substance becomes 1/16th of original in 80 minutes, Find the half-life **Options:**

(a) 20 min (b) 40 min (c) 60 min (d) 80 min **Answer:** (a) **Solution:** $k = \frac{1}{t} \times 2.303 \log \frac{1}{1/16}$ $k = \frac{1}{80} \times 2.303 \log 16$

$$k = \frac{1}{80} \times 2.303 \times 4 \log 2 = 0.035 \operatorname{min}^{-1}$$
$$t_{1/2} = \frac{0.693}{0.035 \operatorname{min}^{-1}} = 20 \operatorname{min}$$

Question: Bakelite is formed by cross linking of which of the following? **Options:**


(a) Novolac(b) Buna-s

(c) Dacron

(d) PHBV

Answer: (a)

Solution:

Question: In FCC, 50 % tetrahedral void is filled. Find the effective number of atoms in the cell if made using the same atoms?

Options: (a) 2

(b) 4

(c) 6

(d) 8

Answer: (d)

Solution:

Number of atoms in FCC unit cell = 4 Total number of tetrahedral voids = $2 \times 4 = 8$ Given that 50% tetrahedral voids are occupied by atoms, i.e., Number of atoms present in tetrahedral voids = 50% of 8 = 4Therefore, the effective number of atoms in the cell = 4 + 4 = 8

Question: Which of the following do not have magnetic moment of 1.73 B.M? **Options:**

(a) O_2^+ (b) O_2^- (c) [Cu(NH_3)_4]Cl₂ (d) CuI **Answer:** (d) **Solution:** CuI : Cu⁺ : [Ar]3d¹⁰ No unpaired electrons

Question: If equimolar mixture of NaOH and Na₂CO₃ weight 4g then weight of NaOH is: **Options:**

(a) 1.595
(b) 1.095
(c) 2.904
(d) 2.945
Answer: (b)
Solution:
Given equimolar mixture of NaOH and Na₂CO₃
Mass of mixture = 4g
Let mass of NaOH = w

$$\Rightarrow \frac{w}{40} = \frac{4 - w}{106}$$
$$\Rightarrow w = \frac{160}{146} = 1.0958 g$$

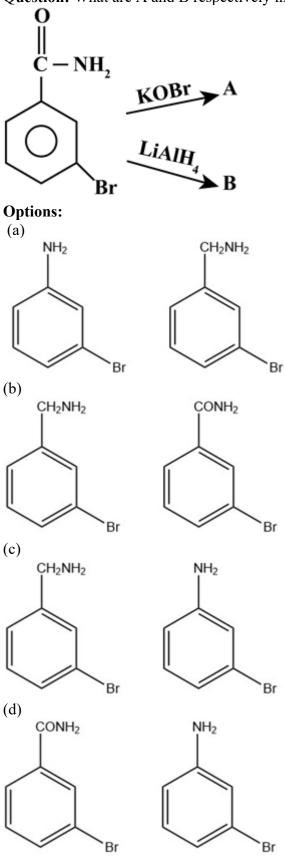
Question: $PCl_5 \rightarrow PCl_3 + Cl_2$

The above first order reaction has initial moles as 10 and after 20 min final moles are 2. Find the rate constant. (Given: $\log 5 = 0.693$)

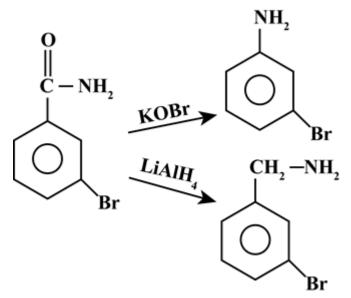
Options:

(a) 0.08 min⁻¹ (b) 0.16 min⁻¹ (c) 0.24 min⁻¹ (d) 0.02 min⁻¹ **Answer:** (a)

Solution:


$$K = \frac{1}{t} \times 2.303 \log \frac{[A_o]}{[A_t]}$$

$$K = \frac{1}{20} \times 2.303 \log \frac{10}{2}$$


$$K = \frac{1}{20} \times 2.303 \log 5 = 0.08 \min^{-1}$$

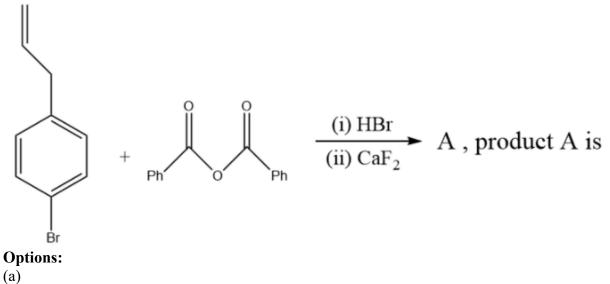
Γ Δ]

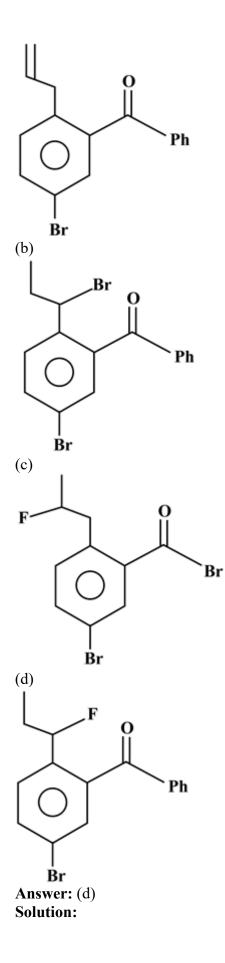
Question: What are A and B respectively in the following reactions?

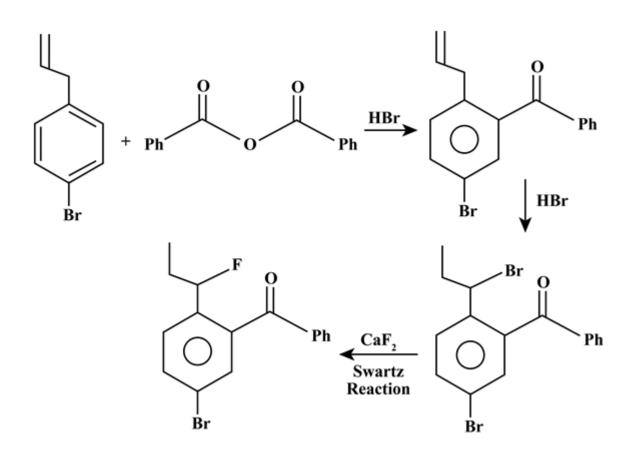
Answer: (a) Solution:

Question: Spin only magnetic moment of Fe²⁺ with weak field ligand is **Options:**

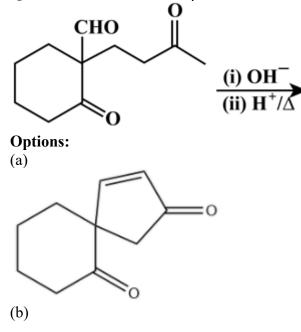
(a) 4.90

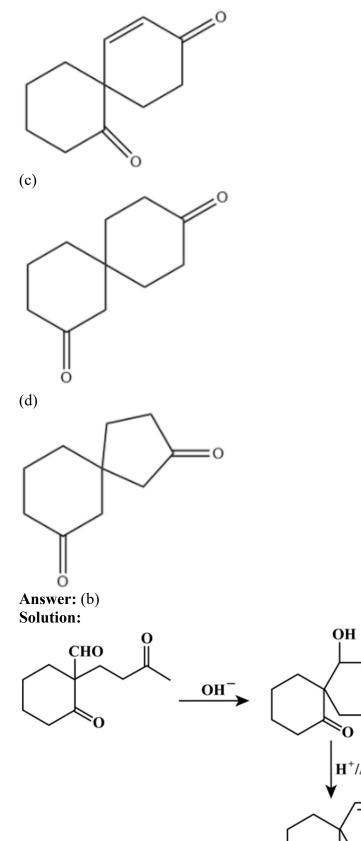

(b) 1.73


(c) 2.80


(d) 0

Answer: (a) Solution: Fe^{2+} (with weak field ligand) has 4 unpaired electrons ($t_{2g}^4 e_g^2$), therefore spin only magnetic moment is 4.90 BM


Question:



Question: What is the final product of the following reaction?

= 0

`0

JEE-Main-20-07-2021-Shift-2 (Memory Based)

MATHEMATICS

Question: Probability of only one of A and B is 1-kProbability of only one of A and C is 1-2kProbability of only one of B and C is 1-k $P(A \cap B \cap C) = K^2, K \in (0, 1).$ Find $P(A \cup B \cup C)$ is **Options:** $(a) > \frac{1}{2}$ (b) $\left[\frac{1}{8}, \frac{1}{4}\right]$ $(c) < \frac{1}{4}$ (d) Answer: (a) Solution: $P(A) + P(B) - 2P(A \cap B) = 1 - k$ (1) $P(A) + P(C) - 2P(A \cap C) = 1 - 2k$ (2) $P(B) + P(C) - 2P(B \cap C) = 1 - k$ (3) $P(A \cap B \cap C) = k^2$ $P(A \cap B \cap C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) + P(C \cap A) + P(A \cap B \cap C)$ Add (1), (2) & 3 $2(P(A)+P(B)+P(C)-P(A\cap B)-P(B\cap C)-P(C\cap A))$ = 3 - 4k $P(A \cup B \cup C) = \frac{3-4k}{2} + k^2$ $=k^{2}-2k+\frac{3}{2}$ $=(k-1)^{2}+\frac{1}{2}>\frac{1}{2}$

Question: If *a*, *b*, 7, 10, 11, 15, Mean = 10 and Variance = $\frac{20}{3}$. Find *a* and *b*. **Options:** (a) (b) (c) (d) Answer: 8, 9 Solution: $\frac{a+b+43}{6} = 10 \Longrightarrow a+b = 17$ $\frac{a^2 + b^2 + 495}{6} - 100 = \frac{20}{3} \Longrightarrow a^2 + b^2 = 145$ \Rightarrow (*a*,*b*) = (9,8) or (8,9) Question: $g(t) = \begin{cases} \max(t^3 + 6t^2 + 9t - 3, 0); & t \in [0, 3] \\ 4 - t; & t \in (3, 4) \end{cases}$ Find points of non-differentiability. **Options:** (a) (b) (c) (d) Answer: () Solution: $\begin{cases} \max(t^3 + 6t^2 + 9t - 3, 0); & t \in [0, 3] \\ 4 - t; & t \in (3, 4) \end{cases}$ g(t) =

: Point of non-differentiability is 3

Question: If $\triangle ABC$ is right angled triangle with sides a, b and c and smallest angle θ . If $\frac{1}{a}, \frac{1}{b}$ and $\frac{1}{c}$ are also the sides of right angled triangle, then find $\sin \theta$ **Options:** (a) (b) (c)
(d)
Answer: ()
Solution:
Let a be smallest side & c be largest side

$$\therefore c^{2} = a^{2} + b^{2} \text{ and } \frac{a}{\sin \theta} = c \quad \dots(1)$$
Also, $\frac{1}{a^{2}} = \frac{1}{b^{2}} + \frac{1}{c^{2}} \Rightarrow b^{2} = \frac{a^{2}c^{2}}{c^{2} - a^{2}} = c^{2} - a^{2}$

$$\Rightarrow a^{2}c^{2} = \left(c^{2} - a^{2}\right)^{2} = a^{4} + c^{4} - 2a^{2}c^{2}$$

$$\Rightarrow a^{4} + c^{4} - 3a^{2}c^{2} = 0$$

$$\Rightarrow \left(\frac{a}{c}\right)^{4} - 3\left(\frac{a}{c}\right)^{2} + 1 = 0$$

$$\Rightarrow \left(\left(\frac{a}{c}\right)^{2} - 1\right)^{2} = \left(\frac{a}{c}\right)^{2}$$

$$\Rightarrow \left(\frac{a}{c}\right)^{2} - \left(\frac{a}{c}\right) - 1 = 0$$

$$\Rightarrow \frac{a}{c} = \frac{1 + \sqrt{5}}{2} = \sin \theta$$

Question: If $\log x_{g^{\left(\frac{1}{2}\right)}} + \log x_{g^{\left(\frac{1}{3}\right)}} + \dots$ upto 21 terms = 504. Find x.

Options:

(a) (b) (c) (d) **Answer:** () **Solution:** $\log_9 x (2+3+....22) = 504$ $\log_9 x (\frac{21}{2}(4+20)) = 504$ $\log_9 x (21 \times 12) = 504$ $\log_9 x = \frac{504}{21 \times 12} = 2$ $x = 9^2 = 81$

Question: $\lim_{x\to 0} \frac{\alpha e^{x} + \beta \ln (1+x) + \gamma e^{-x}}{x \sin^{2} x} = 10, \alpha + \beta + \gamma = ?$ Options: (a) (b) (c) (d) Answer: () Solution: $\lim_{x\to 0} \frac{\alpha e^{x} + \beta \ln (1+x) + \gamma e^{-x}}{x^{2}} = 10 \Rightarrow \alpha + \gamma = 0 \dots (1)$ $\lim_{x\to 0} \frac{\alpha e^{x} + \frac{\beta}{1+x} - \gamma e^{-x}}{2x} = 10 \Rightarrow \alpha - \beta - \gamma = 0 \dots (2)$ $\lim_{x\to 0} \frac{\alpha e^{x} - \frac{\beta}{(1+x)^{2}} + \gamma e^{-x}}{2} = 10 \Rightarrow \alpha - \beta + \gamma = 20 \dots (3)$ $\therefore \beta = -20, \alpha = 10, \gamma = -10$ $\therefore \alpha + \beta + \gamma = -20$

Question: $\operatorname{Re}\left[\left(1+\cos\theta+2\sin\theta\right)^{-1}\right] = \frac{1}{5}$. Find θ . Options: (a) (b) (c) (d) Answer: () Solution: $\operatorname{Re}\left(1+\cos\theta+2\sin\theta\right)^{-1} = \frac{1}{5}$ $\left(\frac{1}{1+\cos\theta+2\sin\theta}\right)\frac{\left(1+\cos\theta-2i\sin\theta\right)}{\left(1+\cos\theta-2i\sin\theta\right)}$ $\operatorname{Real part} = \frac{1+\cos\theta}{\left(1+\cos\theta\right)^2+4\sin^2\theta} = \frac{1}{5}$ $\Rightarrow 5(1+\cos\theta) = \left[\left(1+\cos^2\theta+2\cos\theta\right)+4\left(1-\cos^2\theta\right)\right]$ $\Rightarrow 5+5\cos\theta = 5-3\cos^2\theta+2\cos\theta$

$$\Rightarrow 3\cos^2 \theta + 3\cos \theta = 0$$
$$\Rightarrow \cos \theta (\cos \theta + 1) = 0$$
$$\cos \theta = 0 \text{ or } -1$$
$$\theta = (2n+1)\frac{\pi}{2} \text{ or } (2n+1)\pi$$

Question: In a $\triangle ABC$, we have AB = 3, AC = 7, BC = 5 then find projection of \overline{AC} on \overline{BC} **Options:** (a) (b) (c) (d) Answer: () Solution: $\cos c = \frac{7^2 + 5^2 - 3^2}{2 \cdot 7 \cdot 5} = \frac{49 + 25 - 9}{70}$ $=\frac{65}{70}=\frac{13}{14}$ Projection = $AC\cos\theta = \frac{7 \times 13}{14} = \frac{13}{2}$ **Question:** If $\tan\left(2\tan^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right)\right) = ?$ **Options:** (a) (b) (c) (d) Answer: () Solution: $\tan\left[2\tan^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right)\right]$ $= \tan\left[\tan^{-1}\left(\frac{\frac{6}{5}}{1-\frac{9}{25}}\right) + \tan^{-1}\left(\frac{5}{12}\right)\right]$

$$= \tan\left[\tan^{-1}\left(\frac{15}{8}\right) + \tan^{-1}\left(\frac{5}{12}\right)\right] = \frac{\frac{15}{8} + \frac{5}{12}}{1 - \left(\frac{15}{8}\right)\left(\frac{5}{12}\right)}$$
$$= \frac{180 + 40}{96 - 75} = \frac{220}{21}$$

Question: If $y = \frac{5x+3}{6x+a}$ and f(f(x)) = x then find a.

Options:

(a) (b) (c) (d) **Answer:** () **Solution:** r(5x+3)

$$f(f(x)) = \frac{5\left(\frac{5x+3}{6x+a}\right)+3}{6\left(\frac{5x+3}{6x+a}\right)+a} = \frac{25x+15+18x+3a}{30x+18+6ax+a^2}$$
$$= \frac{33x+15+3a}{x(30+6a)+18+a^2}$$

For a = -5 above expression is x

Question: The lines x = ay - 3 = z + 2 and x = 2y - 2 = bz - 2 are coplanr, find a and b?

Options: (a) (b) (c) (d) Answer: () Solution: $x = \frac{y - \frac{3}{a}}{\frac{1}{a}} = z + 2 \text{ and } x = \frac{y - 1}{\frac{1}{2}} = \frac{z - \frac{2}{b}}{\frac{1}{b}}$

$$\begin{vmatrix} 0 & 1 - \frac{3}{a} & \frac{2}{b} + 2 \\ 1 & \frac{1}{a} & 1 \\ 1 & \frac{1}{2} & \frac{1}{b} \end{vmatrix} = 0$$
$$\Rightarrow \left[\left(1 - \frac{3}{a} \right) - \frac{1}{a} \left(\frac{2}{b} + 2 \right) \right] = \left[\frac{1}{b} \left(1 - \frac{3}{a} \right) - \frac{1}{2} \left(\frac{2}{b} + 2 \right) \right]$$
$$\Rightarrow 1 - \frac{3}{a} - \frac{2}{ab} - \frac{2}{a} = \frac{1}{b} - \frac{3}{ab} - \frac{1}{b} - 1$$
$$\Rightarrow 2 - \frac{5}{a} + \frac{1}{ab} = 0$$
$$\Rightarrow 2ab - 5b + 1 = 0$$

Question: (α, β) is the point on $y^2 = 6x$, that is closest to $\left(3, \frac{3}{2}\right)$ find $2(\alpha, \beta)$

Answer: 9 Solution: $\beta^2 = 6\alpha$(1)

$$\left(\frac{\frac{3}{2}-\beta}{3-\alpha}\right) \times \left(\frac{3}{\beta}\right) = -1 \Longrightarrow 2\alpha\beta = 9 \quad \dots(2)$$

From (1) and (2),

$$\beta^{2} = \frac{27}{\beta}$$
$$\Rightarrow \beta = 3, \alpha = \frac{3}{2}$$
$$\therefore 2(\alpha + \beta) = 9$$

Question: f(x) = x + 1. Find $\lim_{x \to \infty} \frac{1}{n} \left(1 + f\left(\frac{5}{n}\right) + f\left(\frac{10}{n}\right) + \dots + f\left(\frac{5(n-1)}{n}\right) \right)$ Answer: $\frac{7}{2}$ Solution: f(x) = x + 1

$$\therefore \lim_{n \to \infty} \frac{1}{n} \left[1 + f\left(\frac{5}{n}\right) + f\left(\frac{10}{n}\right) + \dots + f\left(\frac{5(n-1)}{n}\right) \right]$$

$$= \lim_{n \to \infty} \frac{1}{n} \left[1 + 1 + \frac{5}{n} + 1 + \frac{10}{n} + \dots + \frac{5(n-1)}{n} \right]$$

$$= \lim_{n \to \infty} 1 + \frac{5}{n^2} \left\{ 1 + 2 + \dots + (n-1) \right\}$$

$$= \lim_{n \to \infty} 1 + \frac{5}{2} = \frac{7}{2}$$

$$\begin{aligned} \mathbf{Question:} \quad & \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \left[[x] + \sin x \right] dx = ? \\ \mathbf{Answer:} & -\pi \\ \mathbf{Solution:} \\ \left[[x] + \sin x \right] = [x] + [\sin x] \\ & \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \left[[x] + \sin x \right] dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} [x] dx + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} [\sin x] dx \\ & \int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} \left[[x] + \sin x \right] dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} [x] dx + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} [\sin x] dx \\ & \int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} \left[x \right] dx + \int_{-1}^{0} [x] dx + \int_{0}^{1} [x] dx + \int_{1}^{\frac{\pi}{2}} [x] dx + \int_{-\frac{\pi}{2}}^{0} [\sin x] dx + \int_{0}^{\frac{\pi}{2}} [\sin x] dx \\ & = \int_{-\frac{\pi}{2}}^{-1} -2 dx + \int_{-1}^{0} -dx + \int_{0}^{1} 0 dx + \int_{1}^{\frac{\pi}{2}} dx + \int_{0}^{0} -dx + \int_{0}^{\frac{\pi}{2}} 0 dx \\ & = -2x \Big|_{-\frac{\pi}{2}}^{-1} -x \Big|_{-1}^{0} + x \Big|_{1}^{\frac{\pi}{2}} -x \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \\ & = -2 \left(-1 + \frac{\pi}{2} \right) - (0 + 1) + \left(\frac{\pi}{2} - 1 \right) - \left(0 + \frac{\pi}{2} \right) \\ & = 2 - \pi - 1 + \frac{\pi}{2} - 1 - \frac{\pi}{2} \\ & = -\pi \end{aligned}$$