JEE Main 2020 Paper

Date of Exam: $\mathbf{9}^{\text {th }}$ January (Shift I)
Time: 9:30 am - 12:30 pm
Subject: Physics

1. Three identical solid spheres each have mass ' m ' and diameter ' d ' are touching each as shown in the figure. Calculate ratio of moment of inertia about the axis perpendicular to plane of paper and passing through point P and B as shown in the figure. Given P is centroid of the triangle

a. $\frac{13}{23}$
b. $\frac{11}{19}$
c. $\frac{7}{9}$
d. $\frac{13}{11}$

Solution: (a)
Moment of Inertia of solid sphere $=\frac{2}{5} M\left(\frac{d}{2}\right)^{2}$
Distance of centroid (Point P) from centre of sphere $=\left(\frac{2}{3} \times \frac{\sqrt{3} d}{2}\right)=\frac{d}{\sqrt{3}}$
By Parallel axis theorem,
Moment of Inertia about $P=3\left[\frac{2}{5} M\left(\frac{d}{2}\right)^{2}+M\left(\frac{d}{\sqrt{3}}\right)^{2}\right]=\frac{13}{10} M d^{2}$
Moment of Inertia about $B=2\left[\frac{2}{5} M\left(\frac{d}{2}\right)^{2}+M(d)^{2}\right]+\frac{2}{5} M\left(\frac{d}{2}\right)^{2}=\frac{23}{10} M d^{2}$
Now ratio $=\frac{13}{23}$
2. A sold sphere having a radius R and uniform charge density ρ has a radius $\mathrm{R} / 2$ as shown in the figure. Find the ratio of the magnitude of electric field at point A and B

a. $\frac{18}{19}$
b. $\frac{11}{17}$
c. $\frac{9}{17}$
d. $\frac{9}{91}$

Solution: (c)
For solid sphere,
Field inside sphere, $\mathrm{E}=\frac{\rho r}{3 \epsilon_{0}}$ \& Field outside sphere, $\mathrm{E}=\frac{\rho R^{3}}{3 r^{2} \epsilon_{0}}$ where, r is distance from centre and R is radius of sphere
Electric field at A due to sphere of radius R (sphere 1) is zero and therefore, net electric field will be because of sphere of radius $\frac{R}{2}$ (sphere 2) having charge density ($-\rho$)

$$
\begin{aligned}
& E_{A}=\frac{-\rho R}{2\left(3 \epsilon_{0}\right)} \\
& \left|E_{A}\right|=\frac{\rho R}{6 \varepsilon_{0}}
\end{aligned}
$$

Similarly, Electric field at point $B=E_{B}=E_{1 B}+E_{2 B}$
$E_{1 B}=$ Electric Field Due to solid sphere of radius $R=\frac{\rho R}{3 \varepsilon_{0}}$
$E_{2 B}=$ Electric Field Due to solid sphere of radius $\frac{R}{2}$ which having charge density $(-\rho)$

$$
\begin{gathered}
=-\frac{\rho\left(\frac{R}{2}\right)^{3}}{3\left(\frac{3 R}{2}\right)^{2} \varepsilon_{0}}=-\frac{\rho R}{54 \varepsilon_{0}} \\
E_{B}=E_{1 A}+E_{2 A}=\frac{\rho R}{3 \varepsilon_{0}}-\frac{\rho R}{54 \varepsilon_{0}}=\frac{17 \rho R}{54 \varepsilon_{0}} \\
\frac{\left|E_{A}\right|}{\left|E_{B}\right|}=\frac{9}{17}
\end{gathered}
$$

3. Consider an infinitely long current carrying cylindrical straight wire having radius 'a'. Then the ratio of magnetic field at distance $a / 3$ and 2 a from axis of wire is.
a. $3 / 5$
b. $2 / 3$
c. $1 / 2$
d. $4 / 3$

Solution: (b)

$$
\begin{aligned}
& B_{A}=\frac{\mu_{0} i r}{2 \pi a^{2}}=\frac{\frac{\mu_{0} i a}{3}}{2 \pi a^{2}}=\frac{\mu_{0 i}}{\pi a^{2}} \frac{a}{6}=\frac{\mu_{0 i}}{6 \pi a} \\
& B_{B}=\frac{\mu_{0} i(2 a)^{2}}{2 \pi(2 a)}=\frac{\mu_{0} i}{4 \pi a} \\
& \frac{B_{A}}{B_{B}}=\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

4. Particle moves from point A to point B along the line shown in figure under the action of force. $\bar{F}=-x \hat{\imath}+y \hat{\jmath}$. Determine the work done on the particle by \bar{F} in moving the particle from point A to point B

a. 1 J
b. 1/2 J
c. 2 J
d. 3 J

Solution: (a)

$$
\begin{gathered}
d \vec{s}=(d x \hat{\imath}+d y \hat{\jmath}) \\
=(-x \hat{\imath}+y \hat{\jmath}) \cdot(d x \hat{\imath}+d y \widehat{\jmath}) \\
=\int_{1}^{0}-x d x+\int_{0}^{1} y d y
\end{gathered}
$$

$$
=-\left.\frac{x^{2}}{2}\right|_{1} ^{0}+\left.\frac{y^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}+\frac{1}{2}=1 \mathrm{~J}
$$

5. For the given $P-V$ graph for an ideal gas, chose the correct $V-\mathrm{T}$ graph. Process $B C$ is adiabatic.

a.
b.

c.

d.

Solution: (a)
For process A-B; Volume is constant;
For process $B-C, P V^{\gamma}=$ Constant \& $P V=n R T$, Therefore $T V^{\gamma-1}=$ Constant ;
Therefore as V increases T increases.
For process $C-A$; pressure is constant, Therefore $V=k T$
From above, correct answer is option 1.
6. Given, Electric field at point $\mathrm{P}, \vec{p}=-\hat{\imath}-3 \hat{\jmath}+2 \hat{k}$ and $\hat{r}=\hat{\imath}+3 \hat{\jmath}+5 \hat{k}$. Find vector parallel to electric field at position \vec{r}. [Note that $\vec{p} \cdot \vec{r}=0$]
a. $\hat{\imath}+3 \hat{\jmath}-2 \hat{k}$
b. $3 \hat{\imath}+\hat{\jmath}+2 \hat{k}$
c. $-3 \hat{\imath}-\hat{\jmath}-2 \hat{k}$
d. $-\hat{\imath}+3 \hat{\jmath}+2 \hat{k}$

Solution: (a)
Since, we have to find vector parallel to electric field at position \vec{r}
We have to find $\vec{p} \cdot \vec{r}=0$
Since already in question, $\vec{p} \cdot \vec{r}=0$ is given we need to find E such that

$$
\vec{E}=\lambda(\vec{p})
$$

where λ is a arbitrary positive constant
On putting, $\lambda=-1$, we get, $\vec{E}=\hat{\imath}+3 \hat{\jmath}-2 \hat{k}$
7. A particle of mass m is revolving around a planet in a circular orbit of radius R. At the instant the particle has velocity \vec{V}, another particle of mass $\frac{m}{2}$ moving at velocity of $\frac{\vec{v}}{2}$ in same direction collides perfectly in-elastically with the first particle. The new path of the combined body will take is
a. Elliptical
b. Circular
c. Straight Line
d. Spiral

Solution: (a)
By conservation of linear momentum
$\frac{m}{2} \frac{V}{2}+m V=\left(m+\frac{m}{2}\right) V_{f}$
$V_{f}=\frac{5 V}{6}$
Escape velocity will be at $\sqrt{2} V$ and at velocity less than escape velocity path will be elleptical or part of ellipse except for velocity V where path will be circular.
Hence the resultant mass will go on to an elliptical path
8. Two particles of same mass moving with velocities $\overrightarrow{v_{1}}=v \hat{\imath}$ and and $\overrightarrow{v_{1}}=\frac{v}{2} \hat{\imath}+\frac{v}{2} \hat{\jmath}$ collide in - elastically. Find the loss in kinetic energy.
a. $\frac{m v^{2}}{8}$
b. $\frac{1 m v^{2}}{8}$
c. $\frac{9 m v^{2}}{8}$
d. $\frac{3 m v^{2}}{8}$

Solution: (a)
Conserving linear momentum
$m v \hat{\imath}+m\left(\frac{v}{2} \hat{\imath}+\frac{v}{2} \hat{\jmath}\right)=2 m\left(v_{1} \hat{\imath}+v_{2} \hat{\jmath}\right)$
By equating $\hat{\imath}$ and \hat{j}
$v_{1}=\frac{3 v}{4}$ and $v_{2}=\frac{v}{4}$
Initial K.E $=\frac{m v^{2}}{2}+\frac{m}{2} \times\left(\frac{v}{\sqrt{2}}\right)^{2}=\frac{3 m v^{2}}{4}$
Final K.E $=\frac{2 m}{2} \times\left(\frac{v \sqrt{10}}{4}\right)^{2}=\frac{m v^{2}}{8}$

Change in $\mathrm{KE}=$
$\frac{3 m v^{2}}{4}-\frac{5 m v^{2}}{8}=\frac{m v^{2}}{8}$
9. Three waves of same intensity $\left(I_{0}\right)$ having initial phases $0, \frac{\pi}{4},-\frac{\pi}{4} \mathrm{rad}$ respectively interfere at a point. Find the resultant intensity.
a. $5.8 I_{0}$
b. I_{0}
c. $0.4 I_{0}$
d. $0.3 I_{0}$

Solution: (a)

Amplitudes can be vectorially added
$A_{\text {resultant }}=(\sqrt{2}+1) A$
Since, $\mathrm{I} \propto A^{2}$
Therefore, $I_{\text {res }}=(\sqrt{2}+1)^{2} I_{0}=5.8 I_{0}$
10. An ideal liquid (water) flowing through a tube of non-uniform cross section area at A and B are $40 \mathrm{~cm}^{2}$ and $20 \mathrm{~cm}^{2}$ respectively. If pressure difference between $A \& B$ is 700 $\mathrm{N} / \mathrm{m}^{2}$ then volume flow rate is

a. $2732 \mathrm{~cm}^{3} / \mathrm{s}$
b. $2142 \mathrm{~cm}^{3} / \mathrm{s}$
c. $1832 \mathrm{~cm}^{3} / \mathrm{s}$
d. $3218 \mathrm{~cm}^{3} / \mathrm{s}$

Solution: (a)
Using equation of continuity
$\mathrm{V}_{\mathrm{A}} \times \mathrm{Area}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}} \times \mathrm{Area}_{\mathrm{B}}$

$$
40 V_{A}=20 V_{B}
$$

$2 V_{A}=V_{B}$
Using Bernoulli's equation
$P_{A}+\frac{1}{2} \rho V_{A}^{2}=P_{B}+\frac{1}{2} \rho V_{B}^{2}$
$P_{A}-P_{B}=\frac{1}{2} \rho\left(V_{B}^{2}-V_{A}^{2}\right)$
$\Delta P=\frac{1}{2} 1000\left(V_{B}^{2}-\frac{V_{B}^{2}}{4}\right)$
$\Delta P=500 \times \frac{3 V_{B}^{2}}{4}$
$V_{B}=\sqrt{\frac{(\Delta P) \times 4}{1500}}=\sqrt{\frac{(700) \times 4}{1500}}=\sqrt{\frac{28}{15}} \mathrm{~m} / \mathrm{s}$
Volume flow rate $=V_{B} \times$ Area $_{B}=20 \times 100 \times \sqrt{\frac{28}{15}} \mathrm{~cm}^{3} / \mathrm{s}=2732 \mathrm{~cm}^{3} / \mathrm{s}$
11. A screw gauge advances by 3 mm in 6 rotations. There are 50 divisions on circular scale. Find least count of screw gauge?
a. 0.002 cm
b. 0.001 cm
c. 0.01 cm
d. 0.02 cm

Solution: (b)
Pitch $=\frac{3}{6}=0.5 \mathrm{~mm}$
Least count $=\frac{\text { Pitch }}{\text { Number of division }}=\frac{0.5 \mathrm{~mm}}{50}=\frac{1}{100} \mathrm{~mm}=0.01 \mathrm{~mm}=0.001 \mathrm{~cm}$
12. A telescope of aperture diameter 5 m is used to observe the moon from the earth. Distance between the moon and earth is $4 \times 10^{5} \mathrm{~km}$. Determine the minimum distance between two points on the moon's surface which can be resolved using this telescope. (Wave length of light is $5893 \AA$)
a. 60 m
b. 20 m
c. 600 m
d. 200 m

Solution: (a)

Minimum angle for clear resolution,

$$
\theta=1.22 \frac{\lambda}{\mathrm{a}}
$$

distance $=0_{1} \mathrm{O}_{2}=\mathrm{d} \theta$

$$
=1.22 \frac{\lambda}{\mathrm{a}} \mathrm{~d}
$$

distance $=\mathrm{O}_{1} \mathrm{O}_{2}=\frac{1.22 \times 5893 \times 10^{-10} \times 4 \times 10^{8}}{5} \approx 57.52 \mathrm{~m}$
\therefore Nearest option is 60 m
13. Photons of wavelength $6556 \AA$ falls on a metal surface. If ejected electrons with maximum K.E moves in magnetic field of $3 \times 10^{-4} \mathrm{~T}$ in circular orbit of radius $10^{-2} \mathrm{~m}$, then work function of metal surface is
a. 1.8 eV
b. 0.8 eV
c. 1.1 eV
d. 1.4 eV

Solution: (c)
From photoelectric equation,
$\frac{\mathrm{hc}}{\lambda}=W+K . E_{\text {max }}$
Where, hc $=12400 \mathrm{eV} \AA$
$\Rightarrow \frac{12400}{6556}=W+K . E_{\text {max }}$
$\Rightarrow 1.9 \mathrm{eV}=\mathrm{W}+\mathrm{K}_{\mathrm{E}} \mathrm{E}_{\max }-----(1)$

Radius of charged particle moving in a magnetic field is given by
$\mathrm{r}=\frac{\mathrm{mv}}{\mathrm{qB}}$ where, $\frac{1}{2} \mathrm{mv}^{2}=\mathrm{K} . \mathrm{E}_{\max }=\mathrm{eV}$
$\Rightarrow r=\frac{\sqrt{\frac{2 \mathrm{eV}}{\mathrm{m}}} \times m}{e B}=\frac{1}{B} \sqrt{\frac{2 \mathrm{mV}}{\mathrm{e}}}$
$\Rightarrow 10^{-2}=\frac{1}{3 \times 10^{-4}} \sqrt{\frac{2 \times 9.1 \times 10^{-31} \times V}{1.6 \times 10^{-19}}}$
$\Rightarrow \mathrm{V}=0.8 \mathrm{~V}$
So, K. $E_{\text {max }}=0.8 \mathrm{eV}$
Substituting in (1),
$1.9=W+0.8$
i.e. $W=1.1 \mathrm{eV}$
14. Kinetic energy of the particle is E and it's De-Broglie wavelength is λ. On increasing it's K.E by ΔE, it's new De-Broglie wavelength becomes $\frac{\lambda}{2}$. Then ΔE is
a. 3 E
b. E
c. 2E
d. 4E

Solution: (a)

$$
\begin{gathered}
\lambda=\frac{h}{m v}=\frac{h}{\sqrt{2 m(K E)}} \\
\Rightarrow \lambda \propto \frac{1}{\sqrt{K E}} \\
\frac{\lambda}{\lambda / 2}=\sqrt{\frac{K E_{f}}{K E_{i}}} \\
4 K E_{i}=K E_{f} \\
\Rightarrow \Delta E=K E_{f}-K E_{i}=4 K E_{i}-K E_{i}=3 K E_{i}=3 E
\end{gathered}
$$

15. The dimensional formula of $\sqrt{\frac{h c^{5}}{G}}$ is
a. $\left[M L^{2} T^{-3}\right]$
b. $\left[M L^{2} T^{-2}\right]$
c. $\left[M L^{-2} T^{2}\right]$
d. $\left[M L T^{-2}\right]$
Solution: (b)

$$
\begin{gathered}
E=\frac{h c}{\lambda} \\
\Rightarrow h c=E \lambda \\
\text { Since, }[E]=\left[M L^{2} T^{-2}\right]
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
{[h c]=\left[M L^{3} T^{-2}\right]} \\
{[c]=\left[L T^{-1}\right]} \\
{[G]=\left[\left[M^{-1} L^{3} T^{-2}\right]\right.} \\
{\left[\sqrt{\frac{h c^{5}}{G}}\right]=\left[M L^{2} T^{-2}\right]}
\end{gathered}
$$

16. Two immiscible liquids of refractive index $\sqrt{2}$ and $2 \sqrt{2}$ are filled with equal height h in a vessel. Then apparent depth of bottom surface of the container given that outside medium is air
a. $\frac{3 \sqrt{2} h}{4}$
b. $\frac{3 h}{4}$
c. $\frac{3 h}{2}$
d. $\frac{3 h}{4 \sqrt{2}}$

Solution: (a)

Apparent height as seen from liquid 1 (having refractive index $\mu_{1}=\sqrt{2}$) to liquid 2 (refractive index $\mu_{2}=2 \sqrt{2}$)
$\mathrm{D}=\frac{h \mu_{1}}{\mu_{2}}=\frac{h}{2}$
Now, Actual height perceived from air, $\mathrm{h}+\frac{h}{2}=\frac{3 h}{2}$
Therefore, apparent depth of bottom surface of the container (apparent depth as seen from air (having refractive index $\mu_{0}=1$) to liquid 1(having refractive index $\mu_{1}=\sqrt{2}$)

$$
\begin{aligned}
& =\frac{3 h}{2} \times \frac{\mu_{0}}{\mu_{1}} \\
& =\frac{3 h}{2} \times \frac{1}{\sqrt{2}}=\frac{3 h}{2 \sqrt{2}}=\frac{3 \sqrt{2} h}{4}
\end{aligned}
$$

17. Find the current in the wire $B C$

a. 1.6 A
b. 2 A
c. 2.4 A
d. 3 A

Solution: (b)
Since resistance 1Ω and 4Ω are in parallel
$\therefore R^{\prime}=\frac{4 \times 1}{4+1}=\frac{4}{5}$
Similarly we can find equivalent resistance ($R^{\prime \prime}$) for resistances 2Ω and 3Ω
$\Rightarrow R^{\prime \prime}=\frac{6}{5}$
And R^{\prime} and $R^{\prime \prime}$ are in series
$\therefore R_{e f f}=\frac{4}{5}+\frac{6}{5}=2 \Omega$
So total current flowing in the circuit ' i ' can be given as

$$
i=\frac{V}{R_{e f f}}=\frac{20}{2}=10 \mathrm{~A}
$$

Current will distribute in ratio opposite to resistance.
So, distribution will be as

So current in the branch BC will be

$$
I=\frac{4 i}{5}-\frac{3 i}{5}=\frac{i}{5}=\frac{10}{5}=2 \mathrm{~A}
$$

18. Two electromagnetic waves are moving in free space in x and y direction respectively whose electric field vectors are given by $\vec{E}_{1}=E_{0} \hat{\jmath} \cos (k x-\omega t)$ and $\vec{E}_{2}=E_{0} \hat{k} \cos (k y-$ ωt). A charge q is moving with velocity $\vec{v}=0.8 c \hat{\jmath}$. Find the net Lorentz force on this charge at $\mathrm{t}=0$ and when it is at origin.
a. $q E_{o}(0.4 \hat{\imath}+0.2 \hat{\jmath}+0.2 \hat{k})$
b. $q E_{o}(0.8 \hat{\imath}+\hat{\jmath}+0.2 \hat{k})$
c. $q E_{o}(0.6 \hat{\imath}+\hat{\jmath}+0.2 \hat{k})$
d. $q E_{o}(0.8 \hat{\imath}+\hat{\jmath}+\hat{k})$

Solution: (b)
Given that the magnetic field vectors are:

$$
\begin{array}{r}
\vec{E}_{1}=E_{o} \hat{\jmath} \cos (k x-\omega t) \\
\vec{E}_{2}=E_{o} \hat{k} \cos (k y-\omega t)
\end{array}
$$

So the magnetic field vectors of the electromagnetic wave are given by

$$
\begin{aligned}
& \vec{B}_{1}=\frac{E_{o}}{c} \hat{k} \cos (k x-\omega t) \\
& \vec{B}_{2}=\frac{E_{o}}{c} \hat{\imath} \cos (k y-\omega t)
\end{aligned}
$$

Then force is

$$
\begin{aligned}
\vec{F} & =q \vec{E}+q(\vec{v} \times \vec{B}) \\
& =q\left(\vec{E}_{1}+\vec{E}_{2}\right)+q\left(\vec{v} \times\left(\vec{B}_{1}+\vec{B}_{2}\right)\right.
\end{aligned}
$$

Now if we put the values of $\vec{E}_{1}, \vec{E}_{2}, \vec{B}_{1}$ and \vec{B}_{2} we can get the net Lorentz force as $\vec{F}=q \vec{E}+q(\vec{v} \times \vec{B})$
Putting values and solving we get

$$
\begin{aligned}
& \vec{F}=q E_{o}[\cos (k x-\omega t) \hat{\jmath}+\cos (k y-\omega t) \hat{k}+0.8 \cos (k x-\omega t) \hat{\imath}-0.8(\cos k y- \\
& \omega t) \hat{k}] \\
& \vec{F}=q E_{o}[0.8 \cos (k x-\omega t) \hat{\imath}+\cos (k x-\omega t) \hat{\jmath}+0.2(\cos k y-\omega t) \hat{k}]
\end{aligned}
$$

Now at $t=0$ and $x=y=0$ we get

$$
\vec{F}=(0.8 \hat{\imath}+\hat{\jmath}+0.2 \hat{k})
$$

19. Two ideal di-atomic gases A and B. A is rigid, B has an extra degree of freedom due to vibration. Mass of A is m and mass of B is $\frac{m}{4}$. The ratio of molar specific heat of A to B at constant volume is
a. $7 / 9$
b. $5 / 9$
c. $5 / 11$
d. $5 / 7$

Solution: (d)
We know that,
Molar heat capacity at constant volume, $C_{V}=\frac{f R}{2}$ (Where f is degree of freedom)
Since, A is diatomic and rigid, degree of freedom for A is 5
Therefore, Molar heat capacity of A at constant volume $\left(C_{V}\right)_{A}=\frac{5 R}{2}$
Since, B is diatomic and have extra degree of freedom because of vibration, degree of freedom for B is $5+2 \times 1=7$ (1 vibration for each atom).
Therefore, Molar heat capacity of B at constant volume $\left(C_{V}\right)_{B}=\frac{7 R}{2}$
Ratio of molar specific heat of A and $B=\frac{\left(C_{V}\right)_{A}}{\left(C_{V}\right)_{B}}=\frac{5}{7}$
20. In the given circuit both diodes are ideal having zero forward resistance and built-in potential of 0.7 V . Find the potential of point E in volts

Solution: (12)
By applying Kirchhoff's Voltage Law in the loop ACBFA

$$
\begin{gathered}
12.7-0.7-V_{\mathrm{EF}}=0 \\
\Rightarrow V_{\mathrm{EF}}=12 \mathrm{~V} \\
\Rightarrow \mathrm{~V}_{\mathrm{E}}=12 \mathrm{~V}
\end{gathered}
$$

21. A particle having mass m and charge q is moving in a region as shown in figure. This region contains a uniform magnetic field directed into the plane of the figure, and a uniform electric field directed along positive x - axis. Which of the following statements are correct for moving charge as shown in figure?

A. Magnitude of electric field $\vec{E}=\frac{3}{4}\left(\frac{m v^{2}}{q a}\right)$
B. Rate of change of work done at a point A is $\frac{3}{4}\left(\frac{m v^{3}}{a}\right)$
C. Rate of change of work done by both fields at point B is zero
D. Change in angular momentum about the origin is $2 m v a$
a. A, B and C are correct
b. A, B, C and D are correct
c. A and B are correct
d. B, C and D are correct

Solution: (a)

Considering statement A
By Work-Energy theorem

$$
\begin{gathered}
W_{\text {mag }}+W_{\text {ele }}=\frac{1}{2} m(2 v)^{2}-\frac{1}{2} m v^{2} \\
\Rightarrow \quad 0+q E_{o} 2 a=\frac{3}{2} m v^{2} \\
E_{o}=\frac{3}{4} \frac{m v^{2}}{q a}
\end{gathered}
$$

So statement A is correct
Now considering statement B
Rate of change of work done at $\mathrm{A}=$ Power of electric force

$$
\begin{aligned}
& =9 E_{o} v \\
& =\frac{3}{4} \frac{m v^{3}}{a}
\end{aligned}
$$

So statement B is correct
Coming to statement C
At B,
$\vec{E} \perp \vec{v}$
So, $\frac{d w}{d t}=0$ for both forces
Coming to statement D.
Change in angular momentum about the origin is
$\Delta \vec{L}=\Delta \overrightarrow{L_{B}}-\Delta \overrightarrow{L_{A}}$
$\overrightarrow{L_{B}}=m(2 v)(2 a)$
$\overrightarrow{L_{A}}=m(v)(a)$
Hence, $\Delta L=3 m v a$
22. If reversible voltage of 200 V is applied across an inductor, current in it reduces from 0.25 A to 0 A in 0.025 ms . Find inductance of inductor (in mH).

Solution: (20)
By using KVL,

$$
\begin{aligned}
& \mathrm{V}-\mathrm{L} \frac{d I}{d t}=0 \\
& \Rightarrow 200=\frac{L(0.25)}{0.025} \times 10^{3} \\
& L=200 \times 10^{-4} \mathrm{H} \\
&=20 \mathrm{mH}
\end{aligned}
$$

23. A wire of length $\mathrm{l}=3 \mathrm{~m}$ and area of cross section $10^{-2} \mathrm{~cm}^{2}$ and breaking stress 4.8×10^{8} $\mathrm{N} / \mathrm{m}^{2}$ is attached with block of mass 10 kg . Find the maximum possible value of angular velocity ($\mathrm{rad} / \mathrm{s}$) with which block can be moved in circle with string fixed at one end.

Solution: (4)

Breaking stress

$$
\begin{aligned}
& \sigma=\frac{T}{A} \\
& T=m \omega^{2} \mathrm{l} \\
& \Rightarrow \sigma=\frac{m \omega^{2} \mathrm{l}}{A} \\
& \Rightarrow \omega^{2}=\frac{\sigma A}{m \mathrm{l}}=\frac{4.8 \times 10^{8} \times 10^{-6}}{10 \times 3}=16 \\
& \Rightarrow \omega=4 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

24. Position of a particle as a function of time is given as $x^{2}=a t^{2}+2 b t+c$, where a, b, c are constants. Acceleration of particle varies with x^{-n} then value of n is

Solution: (3)
Let, v be velocity, α be the acceleration then,
$x^{2}=a t^{2}+2 b t+c$
$2 x v=2 a t+2 b$
$x v=a t+b$
$\Rightarrow v=\frac{a t+b}{x}$
Now, differentiating equation (1),

$$
\begin{aligned}
& v^{2}+\alpha x=a \\
& \alpha x=a-\left(\frac{a t+b}{x}\right)^{2}
\end{aligned}
$$

$\alpha=\frac{a\left(a t^{2}+2 b t+c\right)-(a t+b)^{2}}{x^{3}}$
$\alpha=\frac{a c-b^{2}}{x^{3}}$

$$
\alpha \propto x^{-3}
$$

25. A rod of length 1 m is released from rest as shown in the figure below.

If ω of rod is \sqrt{n} at the moment it hits the ground, then find n
Solution: (15)
: By using conservation of energy,
$m g \frac{l}{2} \sin 30^{\circ}=\frac{1}{2} \frac{m l^{2}}{3} \omega^{2}$
On solving
$\omega^{2}=15$
$\omega=\sqrt{15}$
Therefore, $\mathrm{n}=15$

