Answers \& Solutions

for

JEE (MAIN)-2019 (Online) Phase-2
 (Physics, Chemistry and Mathematics)

Time : 3 hrs.
M.M. : 360

Important Instructions :

1. The test is of $\mathbf{3}$ hours duration.
2. The Test Booklet consists of $\mathbf{9 0}$ questions. The maximum marks are $\mathbf{3 6 0}$.
3. There are three parts in the question paper A, B, C consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage.
4. Each question is allotted 4 (four) marks for each correct response. $1 / 4$ (one-fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
5. There is only one correct response for each question.

PART-A : PHYSICS

1. A cell of internal resistance r drives current through an external resistance R. The power delivered by the cell to the external resistance will be maximum when :
(1) $R=1000 r$
(2) $R=r$
(3) $R=2 r$
(4) $R=0.001 r$

Answer (2)
Sol. For maximum power in external resistance, Internal resistance $=$ External resistance
$\Rightarrow R=r$
2. A body of mass m_{1} moving with an unknown velocity of $v_{1} \hat{i}$, undergoes a collinear collision with a body of mass m_{2} moving with a velocity $v_{2} \hat{i}$. After collision, m_{1} and m_{2} move with velocities of $v_{3} \hat{i}$ and $v_{4} \hat{i}$, respectively.

If $m_{2}=0.5 m_{1}$ and $v_{3}=0.5 v_{1}$, then v_{1} is:
(1) $v_{4}-\frac{v_{2}}{4}$
(2) $v_{4}-v_{2}$
(3) $v_{4}+v_{2}$
(4) $v_{4}-\frac{v_{2}}{2}$

Answer (2)

Sol. $m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{3}+m_{2} v_{4}$ $m_{1} v_{1}+0.5 m_{1} v_{2}=0.5 m_{1} v_{1}+0.5 m_{1} v_{4}$ $v_{1}=v_{4}-v_{2}$
3. In a line of sight radio communication, a distance of about 50 km is kept between the transmitting and receiving antennas. If the height of the receiving antenna is 70 m , then the minimum height of the transmitting antenna should be :
(Radius of the Earth $=6.4 \times 10^{6} \mathrm{~m}$).
(1) 20 m
(2) 51 m
(3) 32 m
(4) 40 m

Answer (3)
Sol. $\sqrt{2 \times 70 \times R_{E}}+\sqrt{2 \times h_{R} \times R_{E}}=50 \times 10^{3}$
Putting $R_{E}=6.4 \times 10^{6} \mathrm{~m}$ and solving we get $h_{R}=32 \mathrm{~m}$
4. The electric field in a region is given by $\vec{E}=(A x+B) \hat{i}$, where E is in $N C^{-1}$ and x is in metres. The values of constants are $A=20 \mathrm{SI}$ unit and $B=10 \mathrm{SI}$ unit. If the potential at $x=1$ is V_{1} and that at $x=-5$ is V_{2}, then $V_{1}-V_{2}$ is :
(1) 180 V
(2) -520 V
(3) 320 V
(4) -48 V

Answer (1)
Sol. $d V=-\vec{E} \cdot \overrightarrow{d r}=-(A x+B) d x$
$\int_{V_{2}}^{V_{1}} d V=\int_{-5}^{1}-(A x+B) d x$

$$
\begin{aligned}
V_{1}-V_{2} & =\left(-A \frac{x^{2}}{2}-B x\right)_{-5}^{1} \\
& =\left(-\frac{A}{2}-B\right)+\left(\frac{A}{2} 25+B(-5)\right) \\
& =12 A-6 B=240-60=180 \mathrm{~V}
\end{aligned}
$$

5. A parallel plate capacitor has $1 \mu \mathrm{~F}$ capacitance. One of its two plates is given $+2 \mu \mathrm{C}$ charge and the other plate, $+4 \mu \mathrm{C}$ charge. The potential difference developed across the capacitor is :
(1) 5 V
(2) 1 V
(3) 3 V
(4) 2 V

Answer (2)
Sol. $V=\frac{q}{C}=\frac{1 \mu C}{1 \mu F}$
$=1 \mathrm{~V}$

6. The given diagram shows four processes i.e., isochoric, isobaric, isothermal and adiabatic. The correct assignment of the processes, in the same order is given by :

(1) adcb
(2) adbc
(3) dabc
(4) dacb

Answer (3)

Sol. Between the isothermal and the adiabatic processes, $\mathrm{P}-\mathrm{V}$ graph for adiabatic is steeper.
7. Two magnetic dipoles X and Y are placed at a separation d, with their axes perpendicular to each other. The dipole moment of Y is twice that of X. A particle of charge q is passing through their mid-point P, at angle $\theta=45^{\circ}$ with the horizontal line, as shown in figure. What would be the magnitude of force on the particle at that instant? (d is much larger than the dimensions of the dipole)

(1) 0
(2) $\sqrt{2}\left(\frac{\mu_{0}}{4 \pi}\right) \frac{\mathbf{M}}{\left(\frac{d}{2}\right)^{3}} \times \mathbf{q v}$
(3) $\left(\frac{\mu_{0}}{4 \pi}\right) \frac{2 M}{\left(\frac{d}{2}\right)^{3}} \times q v$
(4) $\left(\frac{\mu_{0}}{4 \pi}\right) \frac{\mathbf{M}}{\left(\frac{d}{2}\right)^{3}} \times q v$

Answer (1)

Sol. $\overrightarrow{\mathbf{F}}_{\mathrm{m}}=\mathbf{q}(\overrightarrow{\mathbf{V}} \times \overrightarrow{\mathbf{B}})$

$$
\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}_{\mathrm{x}}+\overrightarrow{\mathbf{B}}_{\mathrm{y}}
$$

Since $M_{y}=2 M_{x}$
$\Rightarrow\left|\overrightarrow{\mathbf{B}}_{\mathrm{x}}\right|=\left|\overrightarrow{\mathbf{B}}_{\mathrm{y}}\right|$
$\vec{B}_{\text {net }}$ is parallel to \vec{V}
$\Rightarrow \overrightarrow{\mathbf{F}}=\mathbf{0}$
8. A damped harmonic oscillator has a frequency of 5 oscillations per second. The amplitude drops to half its value for every 10 oscillations.

The time it will take to drop to $\frac{1}{1000}$ of the original amplitude is close to:
(1) 100 s
(2) 10 s
(3) 50 s
(4) 20 s

Answer (4)
Sol. Time for 10 oscillations $=\frac{10}{5}=2 \mathrm{~s}$

$$
\begin{aligned}
& A=A_{0} e^{-k t} \\
& \frac{1}{2}=e^{-2 k} \Rightarrow \ln 2=2 k \\
& 10^{-3}=e^{-k t} \Rightarrow 3 \ln 10=k t \\
& t
\end{aligned}=\frac{3 \ln 10}{k}=\frac{3 \ln 10}{\ln 2} \times 2 .
$$

9. If Surface tension (S), Moment of Inertia (I) and Planck's constant (h), were to be taken as the fundamental units, the dimensional formula for linear momentum would be:
(1) $\left.S^{1 / 2}\right|^{3 / 2} h^{-1}$
(2) $S^{3 / 2} 1^{1 / 2} h^{0}$
(3) $S^{1 / 2} I^{1 / 2} h^{-1}$
(4) $\left.S^{1 / 2}\right|^{1 / 2} h^{0}$

Answer (4)
Sol. $[\mathrm{p}]=\mathrm{MLT}^{-1}=\left[\mathrm{l}^{\mathrm{x}} \mathrm{h}^{\mathrm{y}} \mathrm{S}^{z}\right]$

$$
\begin{aligned}
& =M^{x} L^{2 x}\left(M L^{2} T^{-1}\right)^{y}\left(M T^{-2}\right)^{z} \\
& =M^{x+y+z} L^{2 x+2 y} T^{-y-2 z}
\end{aligned}
$$

$x+y+z=1$
$2(x+y)=1 \Rightarrow x+y=\frac{1}{2} \quad \Rightarrow z=\frac{1}{2}$
$y+2 z=1 \quad \Rightarrow \quad y=0 \quad \Rightarrow x=\frac{1}{2}$
$[p]=\sqrt{1 S}$
10. A circuit connected to an ac source of emf $e=e_{0} \sin (100 t)$ with t in seconds, gives a phase difference of $\frac{\pi}{4}$ between the emf e and current i. Which of the following circuits will exhibit this?
(1) $R L$ circuit with $R=1 \mathrm{k} \Omega$ and $L=10 \mathrm{mH}$
(2) $R L$ circuit with $R=1 \mathrm{k} \Omega$ and $L=1 \mathrm{mH}$
(3) $R C$ circuit with $R=1 \mathrm{k} \Omega$ and $C=10 \mu \mathrm{~F}$
(4) $R C$ circuit with $R=1 \mathrm{k} \Omega$ and $C=1 \mu \mathrm{~F}$

Answer (3)

Sol. As $\phi=\frac{\pi}{4}, x_{c}=R$
11. The magnetic field of an electromagnetic wave is given by:
$\vec{B}=1.6 \times 10^{-6} \cos \left(2 \times 10^{7} z+6 \times 10^{15} t\right)(2 \hat{i}+\hat{j}) \frac{W b}{m^{2}}$
The associated electric field will be:
(1)

$$
\vec{E}=4.8 \times 10^{2} \cos \left(2 \times 10^{7} z+6 \times 10^{15} t\right)(-\hat{i}+2 \hat{j}) \frac{V}{m}
$$

(2) $\vec{E}=4.8 \times 10^{2} \cos \left(2 \times 10^{7} z-6 \times 10^{15} t\right)(2 \hat{i}+\hat{j}) \frac{V}{m}$
(3) $\vec{E}=4.8 \times 10^{2} \cos \left(2 \times 10^{7} z-6 \times 10^{15} t\right)(-2 \hat{j}+\hat{i}) \frac{V}{m}$
(4) $\vec{E}=4.8 \times 10^{2} \cos \left(2 \times 10^{7} z+6 \times 10^{15} t\right)(\hat{i}-2 \hat{j}) \frac{V}{m}$

Answer (1)

Sol. Amplitude of electric field, $\mathrm{E}=\mathrm{B}_{0} \mathrm{C}$

$$
\begin{aligned}
& =1.6 \times 10^{-6} \times \sqrt{5} \times 3 \times 10^{8} \\
& =4.8 \times 10^{2} \sqrt{5} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

Also $\overrightarrow{\mathbf{E}} \times \overrightarrow{\mathbf{B}}$ is along $-\hat{\mathbf{k}}$ (the direction of propagation)
$\Rightarrow \overrightarrow{\mathrm{E}}=4.8 \times 10^{2} \cos \left(2 \times 10^{7} \mathbf{z}+6 \times 10^{15} \mathrm{t}\right)(-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}) \frac{\mathrm{V}}{\mathrm{m}}$
12. In the circuit shown, a four-wire potentiometer is made of a 400 cm long wire, which extends between A and B. The resistance per unit length of the potentiometer wire is $r=0.01 \Omega /$ cm . If an ideal voltmeter is connected as shown with jockey J at 50 cm from end A, the expected reading of the voltmeter will be:

(1) 0.75 V
(2) 0.50 V
(3) 0.20 V
(4) 0.25 V

Answer (4)
Sol. Resistance of potentiometer wire, $\mathrm{R}_{\mathrm{p}}=400 \times 0.01$

$$
=4 \Omega
$$

$\Rightarrow \mathrm{I}=\frac{3}{6}=0.5 \mathrm{~A}$
\Rightarrow Reading of voltmeter $=1 \mathrm{R}_{\mathrm{AJ}}$

$$
\begin{aligned}
& =0.5 \times 50 \times 0.01 \\
& =0.25 \mathrm{~V}
\end{aligned}
$$

13. A nucleus A, with a finite de-Broglie wavelength λ_{A}, undergoes spontaneous fission into two nuclei B and C of equal mass. B flies in the same direction as that of A, while C flies in the opposite direction with a velocity equal to half of that of B. The de-Broglie wavelength λ_{B} and λ_{C} of B and C are respectively:
(1) $2 \lambda_{A}, \lambda_{A}$
(2) $\lambda_{A}, \frac{\lambda_{A}}{2}$
(3) $\frac{\lambda_{\mathrm{A}}}{2}, \lambda_{\mathrm{A}}$
(4) $\lambda_{A}, 2 \lambda_{A}$

Answer (3)
Sol. $\lambda_{A}=\frac{h}{m V_{A}}$
Conservation of linear momentum
$\Rightarrow m V_{A}=\frac{m}{2} V-\frac{m}{2} \cdot \frac{V}{2}=\frac{m V}{4}$
$\Rightarrow \quad \lambda_{A}=\frac{4 h}{m V}$
$\therefore \quad \mathrm{V}_{\mathrm{A}}=\frac{\mathrm{V}}{4}$
$\lambda_{B}=\frac{h}{\frac{m}{2} V}=\frac{2 h}{m V}=\frac{\lambda_{A}}{2}$
$\lambda_{c}=\frac{h}{\frac{m}{2} \cdot \frac{V}{2}}=\frac{4 h}{m V}=\lambda_{A}$
14. A rocket has to be launched from earth in such a way that it never returns. If E is the minimum energy delivered by the rocket launcher, what should be the minimum energy that the launcher should have if the same rocket is to be launched from the surface of the moon? Assume that the density of the earth and the moon are equal and that the earth's volume is 64 times the volume of the moon.
(1) $\frac{E}{64}$
(2) $\frac{E}{4}$
(3) $\frac{E}{16}$
(4) $\frac{E}{32}$

Answer (3)
Sol. $E=\frac{G M_{E} m}{R_{E}}$

$$
\begin{aligned}
& E^{\prime}=\frac{G M_{m} m}{R_{M}} \\
& \rho R_{E}^{3}=64 \rho R_{M}^{3} \\
& \Rightarrow R_{E}=4 R_{M} \\
& \quad \frac{E^{\prime}}{E}=\frac{M_{M}}{M_{E}} \cdot \frac{R_{E}}{R_{M}}=\frac{1}{64} \cdot 4=\frac{1}{16}
\end{aligned}
$$

$$
\Rightarrow E^{\prime}=\frac{E}{16}
$$

15. In a simple pendulum experiment for determination of acceleration due to gravity (g), time taken for 20 oscillations is measured by using a watch of 1 second least count. The mean value of time taken comes out to be 30 s . The length of pendulum is measured by using a meter scale of least count 1 mm and the value obtained is 55.0 cm . The percentage error in the determination of g is close to:
(1) 6.8%
(2) 0.2%
(3) 3.5%
(4) 0.7%

Answer (1)
Sol. $\mathbf{T}=2 \pi \sqrt{\frac{1}{g}} \Rightarrow \mathbf{g}=4 \pi^{2} \frac{\mathrm{I}}{\mathrm{T}^{2}}$

$$
\frac{\Delta g}{g}=\frac{\Delta I}{I}+\frac{2 \Delta T}{T}=\left(\frac{0.1}{55}+\frac{2 \times 1}{30}\right) \times 100
$$

$\approx 6.8 \%$
16. An electric dipole is formed by two equal and opposite charges q with separation d. The charges have same mass m. It is kept in a uniform electric field E . If it is slightly rotated from its equilibrium orientation, then its angular frequency ω is:
(1) $\sqrt{\frac{2 q E}{m d}}$
(2) $2 \sqrt{\frac{q E}{m d}}$
(3) $\sqrt{\frac{q E}{2 m d}}$
(4) $\sqrt{\frac{q E}{m d}}$

Answer (1)

Sol.

$$
\begin{aligned}
& q E \leftarrow \\
& -E q d \theta=1 \frac{d^{2} \theta}{d t^{2}}=2 \frac{m d^{2}}{4} \cdot \frac{d^{2} \theta}{d t^{2}} \\
& \Rightarrow \frac{d^{2} \theta}{{d t^{2}}_{2}^{2}}-\frac{2 E q \theta}{m d} \\
& \Rightarrow \omega=\sqrt{\frac{2 E q}{m d}}
\end{aligned}
$$

17. A rectangular solid box of length 0.3 m is held horizontally, with one of its sides on the edge of a platform of height 5 m . When released, it slips off the table in a very short time $\tau=0.01 \mathrm{~s}$, remaining essentially horizontal. The angle by which it would rotate when it hits the ground will be (in radians) close to:

(1) 0.3
(2) 0.02
(3) 0.28
(4) 0.5

Answer (4)

Sol. Initial angular acceleration before it slips off
$m g \frac{1}{2}=1 \alpha$
$\alpha=\frac{3 \mathrm{~g}}{2 \mathrm{I}}$
\therefore Angular speed acquire by the box in time $\tau=0.01 \mathrm{~s}$

$$
\omega=\alpha t=\frac{3 \mathrm{~g}}{21} \times 0.01=\frac{3 \times 10 \times 0.01}{2 \times 0.3}=\frac{1}{2} \mathrm{rad} / \mathrm{sec}
$$

\therefore The angle by which it would rotate when hits the ground
$\theta=\omega t^{\prime}$
[Assuming $\omega=$ constant and $t^{\prime}=$ time of fall $=$ $\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}=1 \mathrm{sec}$
$\therefore \quad \theta=\frac{1}{2}$ radians
18. A uniform rectangular thin sheet $A B C D$ of mass M has length a and breadth b, as shown in the figure. If the shaded portion HBGO is cut-off, the coordinates of the centre of mass of the remaining portion will be:

(1) $\left(\frac{2 \mathrm{a}}{3}, \frac{2 \mathrm{~b}}{3}\right)$
(2) $\left(\frac{5 a}{12}, \frac{5 b}{12}\right)$
(3) $\left(\frac{3 a}{4}, \frac{3 b}{4}\right)$
(4) $\left(\frac{5 a}{3}, \frac{5 b}{3}\right)$

Answer (2)
Sol. X- coordinate of CM of remaining sheet
$X_{c m}=\frac{M X-m x}{M-m}$

$$
=\frac{(4 m) \times\left(\frac{a}{2}\right)-M\left(\frac{3 a}{4}\right)}{4 m-m}=\frac{5 a}{12}
$$

Similarly $y_{c m}=\frac{5 b}{12}$
$\therefore \quad \mathrm{CM}\left(\frac{5 a}{12}, \frac{5 b}{12}\right)$
19. In the figure shown, what is the current (in Ampere) drawn from the battery? You are given:

$$
\mathbf{R}_{1}=15 \Omega, \mathbf{R}_{2}=10 \Omega, \mathbf{R}_{3}=20 \Omega, \mathbf{R}_{4}=5 \Omega
$$

$$
R_{5}=25 \Omega, R_{6}=30 \Omega, E=15 \mathrm{~V}
$$

(1) $\frac{13}{24}$
(2) $\frac{9}{32}$
(3) $\frac{20}{3}$
(4) $\frac{7}{18}$

Answer (2)

Sol. Equivalent resistance of the given circuit

$$
\begin{aligned}
& R_{\mathrm{eq}}=45+\frac{10 \times 50}{10+50}=\left(45+\frac{50}{6}\right) \Omega=\frac{160}{3} \Omega \\
& \therefore \quad I=\frac{15}{\frac{160}{3}}=\frac{9}{32} A
\end{aligned}
$$

20. Let $\left|\overrightarrow{A_{1}}\right|=3,\left|\overrightarrow{A_{2}}\right|=5$ and $\left|\overrightarrow{A_{1}}+\overrightarrow{A_{2}}\right|=5$. The value of $\left(2 \overrightarrow{A_{1}}+3 \overrightarrow{A_{2}}\right) \cdot\left(3 \overrightarrow{A_{1}}-2 \overrightarrow{A_{2}}\right)$ is :
(1) -106.5
(2) -118.5
(3) -99.5
(4) -112.5

Answer (2)
Sol. $\left(2 \overrightarrow{A_{1}}+3 \overrightarrow{A_{2}}\right) \cdot\left(3 \overrightarrow{A_{1}}-2 \overrightarrow{A_{2}}\right)=6\left|\overrightarrow{A_{1}}\right|^{2}+5 \overrightarrow{A_{1}} \cdot \overrightarrow{A_{2}}-6\left|\overrightarrow{A_{2}}\right|^{2}$

$$
\begin{equation*}
=(6 \times 9)+5 \overrightarrow{A_{1}} \cdot \overrightarrow{A_{2}}-(6 \times 25) \tag{i}
\end{equation*}
$$

As $25=9+25+2 \overrightarrow{A_{1}} \cdot \overrightarrow{A_{2}}$

$$
\begin{equation*}
\Rightarrow 2 \overrightarrow{A_{1}} \cdot \overrightarrow{A_{2}}=-9 \tag{ii}
\end{equation*}
$$

From (i) and (ii),

$$
\begin{aligned}
\Rightarrow\left(2 \overrightarrow{A_{1}}+3 \overrightarrow{A_{2}}\right) \cdot\left(3 \overrightarrow{A_{1}}-2 \overrightarrow{A_{2}}\right) & =54-22.5-150 \\
& =-118.5
\end{aligned}
$$

21. Calculate the limit of resolution of a telescope objective having a diameter of 200 cm , if it has to detect light of wavelength 500 nm coming from a star.
(1) 457.5×10^{-9} radian
(2) 305×10^{-9} radian
(3) 152.5×10^{-9} radian
(4) 610×10^{-9} radian

Answer (2)

Sol. $\theta=\frac{1.22 \lambda}{D}$

$$
\begin{aligned}
& \theta=\frac{1.22 \times 500 \times 10^{-9}}{200 \times 10^{-2}}=\frac{1.22 \times 500 \times 10^{-9}}{2} \\
& \theta=305 \times 10^{-9} \text { radian }
\end{aligned}
$$

22. Two very long, straight, and insulated wires are kept at 90° angle from each other in $x y$-plane as shown in the figure.

These wires carry currents of equal magnitude I, whose directions are shown in the figure. The net magnetic field at point P will be
(1) Zero
(2) $\frac{+\mu_{0} I}{\pi d}(\hat{z})$
(3) $-\frac{\mu_{0} I}{2 \pi d}(\hat{x}+\hat{y})$
(4) $\frac{\mu_{0} I}{2 \pi d}(\hat{x}+\hat{y})$

Answer (1)

Sol. $\vec{B}=\overrightarrow{B_{1}}+\overrightarrow{B_{2}}=\frac{\mu_{0} 1}{2 \pi d}[\hat{\mathbf{k}}-\hat{\mathbf{k}}]=0$
23. A positive point charge is released from rest at a distance r_{0} from a positive line charge with uniform density. The speed (v) of the point charge, as a function of instantaneous distance r from line charge, is proportional to :

(1) $v \propto \sqrt{\ln \left(\frac{r}{r_{0}}\right)}$
(2) $v \propto \mathbf{e}^{+r / r_{0}}$
(3) $v \propto \ln \left(\frac{r}{r_{0}}\right)$
(4) $v \propto\left(\frac{r}{r_{0}}\right)$

Answer (1)

Sol. $E=\frac{\lambda}{2 \pi \varepsilon_{0} r}$

$$
\begin{aligned}
& \int_{V_{G}}^{V_{P}} d V=\int-\frac{\lambda}{2 \pi \varepsilon_{0} r} d r \\
& \Rightarrow V_{P}-V_{G}=\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \frac{r}{r_{0}} \\
& \frac{1}{2} m v^{2}=q\left(V_{P}-V_{G}\right) \\
& \Rightarrow V \propto\left[\ln \left(\frac{r}{r_{0}}\right)\right]^{\frac{1}{2}}
\end{aligned}
$$

24. A convex lens (of focal length 20 cm) and a concave mirror, having their principal axes along the same lines, are kept 80 cm apart from each other. The concave mirror is to the right of the convex lens. When an object is kept at a distance of 30 cm to the left of the convex lens, its image remains at the same position even if the concave mirror is removed. The maximum distance of the object for which this concave mirror, by itself would produce a virtual image would be :
(1) 30 cm
(2) 25 cm
(3) 20 cm
(4) 10 cm

Answer (4)
Sol.

So clearly radius of curvature of mirror is 20 cm . Now if the object is placed within focal plane i.e. 10 cm then image formed by mirror is virtual.
25. The ratio of mass densities of nuclei ${ }^{40} \mathrm{Ca}$ and ${ }^{16} \mathrm{O}$ is close to :
(1) 0.1
(2) 1
(3) 2
(4) 5

Answer (2)
Sol. Densities of nucleus happens to be constant, irrespective of mass number.
26. A common emitter amplifier circuit, built using an npn transistor, is shown in the figure. Its dc current gain is $250, R_{C}=1 \mathrm{k} \Omega$ and $\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$. What is the minimum base current for $V_{C E}$ to reach saturation?

(1) $10 \mu \mathrm{~A}$
(2) $100 \mu \mathrm{~A}$
(3) $7 \mu \mathrm{~A}$
(4) $40 \mu \mathrm{~A}$

Answer (4)
Sol. For saturation, $V_{C C}-i_{c} \times R_{c}=0$

$$
\begin{aligned}
& \Rightarrow \quad i_{C}=\frac{V_{C C}}{R_{C}}=\frac{10}{10^{3}}=10^{-2} \mathrm{~A} \\
& \because \quad \beta=\frac{I_{C}}{I_{B}}=250 \\
& \therefore \quad I_{B}=\frac{I_{C}}{250}=\frac{10^{-2}}{250}=40 \mu \mathrm{~A}
\end{aligned}
$$

27. A solid sphere and solid cylinder of identical radii approach an incline with the same linear velocity (see figure). Both roll without slipping all throughout. The two climb maximum heights $h_{\text {sph }}$ and $h_{c y l}$ on the incline. The ratio $\frac{h_{\text {sph }}}{h_{c y l}}$ is given by

(1) $\frac{4}{5}$
(2) $\frac{2}{\sqrt{5}}$
(3) 1
(4) $\frac{14}{15}$

Sol. $\mathrm{mgh}_{\mathrm{sph}}=\frac{1}{2} m v^{2}+\frac{1}{2} \cdot \frac{2}{5} m R^{2} \cdot\left(\frac{v}{\mathrm{R}}\right)^{2}$

$$
\begin{equation*}
=\frac{7}{10} m v^{2} \tag{i}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{mgh}_{\text {cylinder }}=\frac{1}{2} m v^{2}+\frac{1}{2} \frac{m R^{2}}{2}\left(\frac{v}{R}\right)^{2}=\frac{3}{4} m v^{2} \\
& \Rightarrow \frac{\mathrm{~h}_{\text {sph }}}{\mathrm{h}_{\text {cylinder }}}=\frac{7 \times 4}{10 \times 3}=\frac{14}{15}
\end{aligned}
$$

28. A particle starts from origin O from rest and moves with a uniform acceleration along the positive x-axis. Identify all figures that correctly represent the motion qualitatively. ($\mathrm{a}=$ acceleration, $\mathrm{v}=$ velocity, $x=$ displacement, $t=$ time)
(A)

(B)

(C)

(D)

(1) (A)
(2) (A), (B), (C)
(3) (A), (B), (D)
(4) (B), (C)

Answer (3)

Sol. $\mathrm{a}=$ Constant
$v=a t$
$x=\frac{1}{2} a t^{2}$ [Particle starts from the origin]
A, B and D are correct graphs.
29. Young's moduli of two wires A and B are in the ratio 7 : 4. Wire A is 2 m long and has radius R. Wire B is 1.5 m long and has radius 2 mm . If the two wires stretch by the same length for a given load, then the value of R is close to
(1) 1.3 mm
(2) 1.9 mm
(3) 1.5 mm
(4) 1.7 mm

Answer (4)
Sol. $\Delta \mathrm{L}=\frac{\mathrm{FL}}{\mathrm{YA}}$

$$
\begin{aligned}
\Rightarrow & \frac{L_{A}}{Y_{A} r_{A}^{2}}=\frac{L_{B}}{Y_{B} r_{B}^{2}} \\
\Rightarrow & r_{A}^{2}=\sqrt{\frac{L_{A}}{L_{B}} \cdot \frac{Y_{B}}{Y_{A}}} \cdot r_{B} \\
& =\sqrt{\frac{2 \times 2 \times 4}{3 \times 7}} \times 2 \mathrm{~mm} \\
& =\frac{4}{4.58} \times 2=1.7 \mathrm{~mm}
\end{aligned}
$$

30. The temperature, at which the root mean square velocity of hydrogen molecules equals their escape velocity from the earth, is closest to
[Boltzmann constant $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Avogadro Number $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{26} / \mathrm{kg}$
Radius of Earth : $6.4 \times 10^{6} \mathrm{~m}$
Gravitational acceleration on Earth $=10 \mathrm{~ms}^{-2}$]
(1) $10^{4} \mathrm{~K}$
(2) 650 K
(3) 800 K
(4) $3 \times 10^{5} \mathrm{~K}$

Answer (1)
Sol. $V_{\text {rms }}=\sqrt{\frac{3 R T}{M}}=11.2 \times 10^{3} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\Rightarrow \quad T & =\frac{M}{3 R} \times\left(11.2 \times 10^{3}\right)^{2} \\
& =\frac{2 \times 10^{-3}}{3 \times 8.3} \times 125.44 \times 10^{6} \simeq 10^{4} \mathrm{~K}
\end{aligned}
$$

PART-B : CHEMISTRY

1. 0.27 g of a long chain fatty acid was dissolved in $100 \mathrm{~cm}^{3}$ of hexane. 10 mL of this solution was added dropwise to the surface of water in a round watch glass. Hexane evaporates and a monolayer is formed. The distance from edge to centre of the watch glass is 10 cm . What is the height of the monolayer?
[Density of fatty acid $=0.9 \mathrm{~g} \mathrm{~cm}^{-3} ; \pi=3$]
(1) $10^{-8} \mathrm{~m}$
(2) $10^{-4} \mathrm{~m}$
(3) $10^{-2} \mathrm{~m}$
(4) $10^{-6} \mathrm{~m}$

Answer (4)
Sol. 0.27 gm in 100 ml of hexane
\therefore in 10 ml of aqueous solution only 0.027 gm acid is present
volume of 0.027 g acid $=\frac{0.027}{0.9} \mathrm{ml}$

$$
\begin{array}{ll}
\therefore & \left.\pi r^{2} h=\frac{0.027}{0.9} \text { (given } r=10 \mathrm{~cm}, \pi=3\right) \\
\therefore & h=10^{-4} \mathrm{~cm} \\
& =10^{-6} \mathrm{~m}
\end{array}
$$

2. The Mond process is used for the :
(1) purification of Zr and Ti
(2) extraction of Mo
(3) purification of Ni
(4) extraction of Zn

Answer (3)

Sol. Nickel is purified by Mond's process

$$
\underset{\text { (impure) }}{\mathrm{Ni}}+4 \mathrm{CO} \xrightarrow{330-350 \mathrm{k}} \mathrm{Ni}(\mathrm{CO})_{4}
$$

$\mathrm{Ni}(\mathrm{CO})_{4} \xrightarrow{450-470 \mathrm{k}} \underset{\text { (pure) }}{\mathrm{Ni}}+4 \mathrm{CO}$
3. The correct statement about ICl_{5} and ICl_{4}^{-}is :
(1) ICI_{5} is square pyramidal and ICl_{4}^{-}is tetrahedral.
(2) both are isostructural.
(3) ICl_{5} is square pyramidal and ICl_{4}^{-}is square planar.
(4) ICI_{5} is trigonal bipyramidal and ICl_{4}^{-}is tetrahedral.

Answer (3)

Sol. $I C I_{5}$ is $s p^{3} d^{2}$ hybridised (5 bond pairs, 1 lone pair)

$\mathrm{ICl}_{4}{ }^{-}$is $s p^{3} d^{2}$ hybridised (4 bond pairs, 2 lone pairs)

square planar
4. For the following reactions, equilibrium constants are given :

$$
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g}) ; \mathrm{K}_{1}=10^{52}
$$

$\mathbf{2 S}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) ; \mathrm{K}_{2}=10^{129}$

The equilibrium constant for the reaction,
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ is :
(1) 10^{154}
(2) 10^{25}
(3) 10^{77}
(4) 10^{181}

Answer (2)

Sol. eqn 1
$\mathrm{S}+\mathrm{O}_{2} \rightleftharpoons \mathrm{SO}_{2}$
$K_{1}=10^{52}$
$e q^{n} 2 \quad 2 \mathrm{~S}+3 \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3} \quad \mathrm{~K}_{2}=10^{129}$
$\mathrm{eq}^{\mathrm{n}} 3 \quad 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
$e q^{n} 3=e q^{n} 2-2\left(e q^{n} 1\right)$
$=\frac{10^{129}}{\left(10^{52}\right)^{2}}=10^{25}$
5. Consider the bcc unit cells of the solids 1 and 2 with the position of atoms as shown below. The radius of atom B is twice that of atom A. The unit cell edge length is 50% more in solid 2 than in 1 . What is the approximate packing efficiency in solid 2?

Solid 1

Solid 2
(1) 45%
(2) 65%
(3) 75%
(4) 90%

Answer (4)
Sol. Volume occupied by atoms in solid 2
$=\frac{4}{3} \pi r^{3}+\frac{4}{3} \pi(2 r)^{3}=12 \pi r^{3}$
relationship between edge length (a) and radius of atom (r)
$=6 r=\sqrt{3} a \Rightarrow a=\frac{6 r}{\sqrt{3}}$
packing efficiency $=\frac{12 \pi r^{3}}{\left(\frac{6 r}{\sqrt{3}}\right)^{3}} \times 100=90 \%$
6. The compound that inhibits the growth of tumors is
(1) cis-[Pt(Cl) $\left.)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
(2) trans-[Pt(CI) $\left.\mathbf{2}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
(3) cis- $\left[\mathrm{Pd}(\mathrm{Cl})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
(4) trans- $\left[\mathrm{Pd}(\mathrm{Cl})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$

Answer (1)

Sol. Cis-platin is used as an anti-cancer drug.
Cis $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$

7. The structure of Nylon-6 is
(1)

(2)

(3)

(4)

Answer (4)

Sol. Nylon-6 is produced from caprolactam

8. Which one of the following alkenes when treated with HCl yields majorly an anti Markovnikov product?
(1) $\mathrm{F}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$
(2) $\mathrm{CH}_{3} \mathrm{O}-\mathrm{CH}=\mathrm{CH}_{2}$
(3) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}=\mathrm{CH}_{2}$
(4) $\mathrm{Cl}-\mathrm{CH}=\mathrm{CH}_{2}$

Answer (1)
Sol. $\mathrm{CF}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$

9. The strength of 11.2 volume solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ is [Given that molar mass of $\mathrm{H}=1 \mathrm{~g} \mathrm{~mol}^{-1}$ and $0=16 \mathrm{~g} \mathrm{~mol}^{-1}$]
(1) 13.6%
(2) 1.7%
(3) 3.4%
(4) 34%

Answer (3)

Sol. 11.2 V of $\mathrm{H}_{2} \mathrm{O}_{2}$
$\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}$
11.2 L of O_{2} at $\mathrm{STP}=0.5 \mathrm{~mol}$

It means 1 L of given $\mathrm{H}_{2} \mathrm{O}_{2}$ solution consist 1 mole of $\mathrm{H}_{2} \mathrm{O}_{2}$ (i.e., 34 g)
strength $=\frac{34}{1000} \times 100=3.4 \%$
10. The covalent alkaline earth metal halide ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) is
(1) BeX_{2}
(2) SrX_{2}
(3) CaX_{2}
(4) MgX_{2}

Answer (1)

Sol. According to Fajan's rule, graeter the polarising power of cation greater would be the covalent character.

Since Be^{2+} has maximum polarising power among given cation, therefore, BeX_{2} would be most covalent among given alkaline with metal halides.
11. Polysubstitution is a major drawback in :
(1) Reimer Tiemann reaction
(2) Acetylation of aniline
(3) Friedel Craft's acylation
(4) Friedel Craft's alkylation

Answer (4)

Sol. Polysubstitution is a major drawback in Friedel Craft's alkylation
12. The IUPAC symbol for the element with atomic number 119 would be :
(1) une
(2) uun
(3) une
(4) unh

Answer (3)

Sol. Symbol for 1 is \mathbf{u} and for 9 is e
\therefore IUPAC symbol for 119 is une
13. 5 moles of an ideal gas at 100 K are allowed to undergo reversible compression till its temperature becomes 200 K . If $\mathrm{C}_{\mathrm{V}}=28 \mathrm{~J} \mathrm{~K}^{-1}$ mol^{-1}, calculate $\Delta \mathrm{U}$ and $\Delta \mathrm{pV}$ for this process. ($\mathrm{R}=8.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
(1) $\Delta \mathrm{U}=14 \mathrm{~kJ} ; \Delta(\mathrm{pV})=18 \mathrm{~kJ}$
(2) $\Delta \mathrm{U}=2.8 \mathrm{~kJ} ; \Delta(\mathrm{pV})=0.8 \mathrm{~kJ}$
(3) $\Delta \mathrm{U}=14 \mathrm{~J} ; \Delta(\mathrm{pV})=0.8 \mathrm{~J}$
(4) $\Delta U=14 \mathrm{~kJ} ; \Delta(\mathrm{pV})=4 \mathrm{~kJ}$

Answer (4)
Sol. $\Delta U=\mathrm{nc}_{\mathrm{vm}} \Delta \mathrm{T}=\mathbf{5} \times \mathbf{2 8} \times 100$
$=14 \mathrm{~kJ}$
$\Delta(P V)=n R\left(T_{2}-T_{1}\right)$
$=5 \times 8 \times 100$
$=4 \mathrm{~kJ}$
14. The calculated spin-only magnetic moments (BM) of the anionic and cationic species of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}$ and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, respectively, are:
(1) 2.84 and 5.92
(2) 4.9 and 0
(3) 0 and 5.92
(4) 0 and 4.9

Answer (4)
Sol. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2} \quad\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \quad\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
4 unpaired no unpaired electron
electrons $\quad \mu=0$
$\mu=4.9$
15. The major product of the following reaction is:

(1)

(2)

(3)

(4)

Answer (3)

Sol.

16. The major product in the following reaction is:

(1)

(2)

(3)

(4)

Answer (4)

Sol.

In the given compound, H -atom attached to secondary N -atom is more acidic. The base removes the more acidic H -atom and the conjugate base of the given compound attacks at CH_{3} group to give the final product shown above.
17. The major product of the following reaction is:

(1)

(2)

(3)

(4)

Answer (2)

Sol.

18. The ion that has $s p^{3} d^{2}$ hybridization for the central atom, is :
(1) $\left[\mathrm{ICl}_{2}\right]^{-}$
(2) $\left[\mathrm{IF}_{6}\right]^{-}$
(3) $\left[\mathrm{BrF}_{2}\right]^{-}$
(4) $\left[\mathrm{ICl}_{4}\right]^{-}$

Answer (4)
Sol. Species
Hybridisation

ICl_{2}^{-}	$s p^{3} d$
ICl_{4}^{-}	$s p^{3} d^{2}$
BrF_{2}^{-}	$s p^{3} d$
IF_{6}^{-}	$s p^{3} d^{\beta}$

19. Calculate the standard cell potential (in V) of the cell in which following reaction takes place:
$\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s})$
Given that

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}=x V \\
& \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\circ}=y V \\
& \mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}}^{\circ}=z V \\
& \begin{array}{ll}
\text { (1) } x-y & \text { (2) } x+y-z \\
\text { (3) } x+2 y-3 z & \text { (4) } x-z
\end{array}
\end{aligned}
$$

Answer (3)
Sol.
$\underset{(\mathrm{aq})}{\mathrm{Ag}^{+}}+\underset{(\mathrm{aq})}{\mathrm{Fe}^{+2}} \longrightarrow \underset{(\mathrm{aq})}{\mathrm{Fe}^{3+}}+\underset{(\mathrm{s})}{\mathrm{Ag}}$
$\mathrm{E}_{\mathrm{cell}}^{\mathrm{o}}=\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}-\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\mathrm{o}}$
To calculate

$$
\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\mathbf{o}}
$$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\circ}=3 z-2 y \\
& \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}=x \\
& \mathrm{E}_{\mathrm{cell}}^{\circ}=x-3 z+2 y
\end{aligned}
$$

20. Which of the following compounds will show the maximum 'enol' content?
(1) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$
(2) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(3) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$
(4) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CONH}_{2}$

Answer (3)

Sol. enol content α acidity of active methelene hydrogens.

Maximum enol content
21. The major product obtained in the following reaction is:

(1)

(2)

(3)

(4)

Answer (1)

Sol.

22. For the solution of the gases w, x, y and z in water at 298 K , the Henrys law constants (K_{H}) are $0.5,2,35$ and 40 kbar , respectively. The correct plot for the given data is :
(1)

(2)

(3)

(4)

Answer (1)
Sol. According to Henry's law

$$
\begin{aligned}
& P=K_{H} \cdot X_{\text {gas }} \\
& \because \quad \mathbf{x}_{\text {gas }}=1-{x_{H_{2} O}} \\
& \therefore \quad P=K_{H}-K_{H} \cdot X_{H_{2} \mathrm{O}} \\
& \\
& \quad y=C+m x
\end{aligned}
$$

gas	K_{H}
w	0.5
x	2
y	35
z	50

23. If p is the momentum of the fastest electron ejected from a metal surface after the irradiation of light having wavelength λ, then for 1.5 p momentum of the photoelectron, the wavelength of the light should be :
(Assume kinetic energy of ejected photoelectron to be very high in comparison to work function):
(1) $\frac{3}{4} \lambda$
(2) $\frac{4}{9} \lambda$
(3) $\frac{2}{3} \lambda$
(4) $\frac{1}{2} \lambda$

Answer (2)
Sol. In photoelectric effect,

$$
\frac{\mathrm{hc}}{\lambda}=w+K E \text { of electron }
$$

It is given that KE of ejected electron is very high in comparison to w.

$$
\frac{\mathrm{hc}}{\lambda}=\mathrm{KE} \Rightarrow \frac{\mathrm{hc}}{\lambda}=\frac{\mathbf{P}^{2}}{2 \mathbf{m}}
$$

New wavelength

$$
\frac{\mathrm{hc}}{\lambda_{1}}=\frac{(1.5 \mathrm{P})^{2}}{2 \mathrm{~m}} \Rightarrow \lambda^{\prime}=\frac{4}{9} \lambda
$$

24. Fructose and glucose can be distinguished by:
(1) Fehling's test
(2) Seliwanoff's test
(3) Barfoed's test
(4) Benedict's test

Answer (2)

Sol. Seliwanoff's test is used to distinguish aldose and ketose
25. Among the following molecules/ions,

$$
\mathrm{C}_{2}^{2-}, \mathrm{N}_{2}^{2-}, \mathrm{O}_{2}^{2-}, \mathrm{O}_{2}
$$

Which one is diamagnetic and has the shortest bond length?
(1) O_{2}
(2) O_{2}^{2-}
(3) N_{2}^{2-}
(4) C_{2}^{2-}

Answer (4)
Sol. Bond length $\propto \frac{1}{\text { bondorder }}$
and diamagnetic species has no unpaired electron in their molecular orbitals.

Bond order

C_{2}^{2-}	3
$\mathrm{~N}_{2}^{2-}$	2
O_{2}^{2-}	1
O_{2}	2

Magnetic character diamagnetic paramagnetic diamagnetic paramagnetic
$\therefore \quad \mathrm{C}_{2}^{2-}$ has least bond length and is diamagnetic
26. For a reaction scheme $A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C$, if the rate of formation of B is set to be zero then the concentration of B is given by :
(1) $k_{1} k_{2}[A]$
(2) $\left(k_{1}-k_{2}\right)[A]$
(3) $\left(\frac{k_{1}}{k_{2}}\right)[A]$
(4) $\left(k_{1}+k_{2}\right)[A]$

Answer (3)

Sol. $A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C$
$\frac{d[B]}{d t}=k_{1}[A]-k_{2}[B]=0$
$[B]=\frac{k_{1}[A]}{k_{2}}$
27. The maximum prescribed concentration of copper in drinking water is :
(1) 3 ppm
(2) 0.05 ppm
(3) 0.5 ppm
(4) 5 ppm

Answer (1)
Sol. Maximum prescribed concentration of Cu in drinking water is 3 ppm .
28. The major product obtained in the following reaction is

(1)

(2)

(3)

(4)

Answer (3)

Sol.

29. The percentage composition of carbon by mole in methane is
(1) 80%
(2) 75%
(3) 20%
(4) 25%

Answer (3)
Sol. In CH 4
one atom of carbon among 5 atoms (1C +4 H atoms)

$$
\begin{aligned}
\therefore \quad \text { Mole } \% \text { of } C & =\frac{1}{5} \times 100 \\
& =20 \%
\end{aligned}
$$

30. The statement that is INCORRECT about the interstitial compounds is
(1) They are chemically reactive.
(2) They are very hard.
(3) They have high melting points.
(4) They have metallic conductivity.

Answer (1)
Sol. Interstitial compounds are inert.

PART-C : MATHEMATICS

1. The vector equation of plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$ is :
(1) $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}-\hat{\mathbf{k}})+2=\mathbf{0}$
(2) $\vec{r} \cdot(\hat{i}-\hat{k})-2=0$
(3) $\overrightarrow{\mathbf{r}} \times(\hat{\mathbf{i}}-\hat{\mathbf{k}})+2=\mathbf{0}$
(4) $\overrightarrow{\mathbf{r}} \times(\hat{\mathbf{i}}+\hat{\mathbf{k}})+2=\mathbf{0}$

Answer (1)
Sol. Equation of the plane passing through the line of intersection of $x+y+z=1$ and $2 x+3 y+4 z$ $=5$ is

$$
\begin{align*}
& (2 x+3 y+4 z-5)+\lambda(x+y+z-1)=0 \\
& (2+\lambda) x+(3+\lambda) y+(4+\lambda) z+(-5-\lambda)=0 \tag{i}
\end{align*}
$$

(i) is perpendicular to $x-y+z=0$

$$
\begin{aligned}
\Rightarrow & (2+\lambda)(1)+(3+\lambda)(-1)+(4+\lambda)(1)=0 \\
& 2+\lambda-3-\lambda+4+\lambda=0 \\
& \lambda=-3
\end{aligned}
$$

\Rightarrow Equation of required plane is

$$
\begin{aligned}
& -x+z-2=0 \\
\Rightarrow & x-z+2=0 \\
\Rightarrow & \overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}-\hat{\mathbf{k}})+2=0
\end{aligned}
$$

2. Which one of the following statements is not a tautology?
(1) $(p \wedge q) \rightarrow(\sim p) \vee q$
(2) $(p \wedge q) \rightarrow p$
(3) $(p \vee q) \rightarrow(p \vee(\sim q))$
(4) $p \rightarrow(p \vee q)$

Answer (3)

Sol. By help of truth table :

| p | q | $\sim \mathrm{q} \sim \mathrm{pv}$ | $\sim \mathrm{p}$ | $\mathrm{p} \wedge \sim \mathrm{q}$ | pvq | $\mathrm{p} \rightarrow \mathrm{pvq}$ | $\mathrm{p} \wedge \mathrm{q}(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{p}$ | $\sim \mathrm{pvq}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | F | T | F | F | T | T | T | T | T |
| T | F | T | T | F | T | T | T | F | T | F |
| F | T | F | F | T | F | T | T | F | T | T |
| F | F | T | T | T | F | F | T | F | T | T |

$(\mathbf{p} \wedge \mathbf{q}) \rightarrow(\sim \mathbf{p}) \mathbf{v q}$	$(\mathbf{p v q}) \rightarrow(\mathbf{p v}(\sim \mathbf{q}))$
\mathbf{T}	T
T	T
T	F
T	T

3. The number of four-digit numbers strictly greater than 4321 that can be formed using the digits $0,1,2,3,4,5$ (repetition of digits is allowed) is :
(1) 360
(2) 306
(3) 288
(4) 310

Answer (4)
Sol. 0, 1, 2, 3, 4, 5

\Rightarrow Required numbers $=216+36+36+18$ $+4=310$
4. In an ellipse, with centre at the origin, if the difference of the lengths of major axis and minor axis is 10 and one of the foci is at $(0,5 \sqrt{3})$, then the length of its latus rectum is :
(1) 5
(2) 6
(3) 8
(4) 10

Answer (1)
Sol. \because Focus is $(0,5 \sqrt{3}) \quad \Rightarrow|b|>|a|$
Let $\mathrm{b}>\mathrm{a}>0$
foci ($0, \pm$ be)
$a^{2}=b^{2}-b^{2} e^{2} \quad \Rightarrow b^{2} e^{2}=b^{2}-a^{2}$
be $=\sqrt{\mathbf{b}^{2}-\mathbf{a}^{2}}$

$$
\begin{align*}
\Rightarrow & b^{2}-a^{2}=75 \tag{i}\\
& 2 b-2 a=10 \\
\Rightarrow & b-a=5 \tag{ii}
\end{align*}
$$

From (i) and (ii)
$b+a=15$
$\Rightarrow b=10, a=5$
Length $L \cdot R \cdot=\frac{2 a^{2}}{b}=\frac{50}{10}=5$
5. A student scores the following marks in five tests : 45, 54, 41, 57, 43. His score is not known for the sixth test. If the mean score is 48 in the six tests, then the standard deviation of the marks in six tests is :
(1) $\frac{100}{\sqrt{3}}$
(2) $\frac{10}{\sqrt{3}}$
(3) $\frac{100}{3}$
(4) $\frac{10}{3}$

Answer (2)
Sol. $\bar{x}=\frac{41+45+54+57+43+x}{6}=48$
$x+240=288$
$x=48$

$$
\begin{aligned}
\sigma^{2} & =\frac{1}{6}\left[\begin{array}{l}
(48-41)^{2}+(48-45)^{2}+(48-54)^{2} \\
+(48-57)^{2}+(48-43)^{2}+(48-48)^{2}
\end{array}\right] \\
& =\frac{1}{6}(49+9+36+81+25) \\
& =\frac{200}{6}=\frac{100}{3} \\
\sigma & =\frac{10}{\sqrt{3}}
\end{aligned}
$$

6. The tangent and the normal lines at the point $(\sqrt{3}, 1)$ to the circle $x^{2}+y^{2}=4$ and the x-axis form a triangle. The area of this triangle (in square units) is :
(1) $\frac{2}{\sqrt{3}}$
(2) $\frac{4}{\sqrt{3}}$
(3) $\frac{1}{3}$
(4) $\frac{1}{\sqrt{3}}$

Answer (1)

Sol. Equation of tangent to circle at point $(\sqrt{3}, 1)$ is

$$
\sqrt{3} x+y=4
$$

\therefore Coordinate of $A=\left(\frac{4}{\sqrt{3}}, 0\right)$
Area $=\frac{1}{2} \times O A \times P M$

$$
=\frac{1}{2} \times \frac{4}{\sqrt{3}} \times 1=\frac{2}{\sqrt{3}} \text { Square units }
$$

7. If the fourth term in the binomial expansion of $\left(\sqrt{\frac{1}{x^{1+\log _{10} x}}}+x^{\frac{1}{12}}\right)^{6}$ is equal to 200 , and $x>1$, then the value of x is :
(1) 10
(2) 10^{3}
(3) 100
(4) 10^{4}

Answer (1)
Sol. $T_{4}={ }^{6} C_{3}\left(\sqrt{x^{\left(\frac{1}{1+\log _{10} x}\right)}}\right)^{3}\left(x^{\frac{1}{12}}\right)^{3}=200$

$$
\begin{gathered}
\Rightarrow 20 x^{\frac{3}{2\left(1+\log _{10} x\right)}} \cdot x^{\frac{1}{4}}=200 \\
x^{\frac{1}{4}+\frac{3}{2\left(1+\log _{10} x\right)}}=10
\end{gathered}
$$

Taking $\log _{10}$ on both sides and put $\log _{10} x=t$

$$
\begin{aligned}
& \left(\frac{1}{4}+\frac{3}{2(1+t)}\right) t=1 \\
& \left(\frac{(1+t)+6}{4(1+t)}\right) \times t=1 \quad \Rightarrow \quad t^{2}+7 t=4+4 t \\
& t^{2}+3 t-4=0 \quad \Rightarrow \quad t^{2}+4 t-t-4=0 \\
\Rightarrow & t(t+4)-1(t+4)=0 \\
\Rightarrow & t=1 \text { or } t=-4 \\
& \log _{10} x=1 \\
\Rightarrow & x=10 \text { or if } \log _{10} x=-4 \\
\Rightarrow & x=10^{-4}
\end{aligned}
$$

Note: There seems a printing error in this question in the original question paper.
$2=4 x$ at the point where it intersects the circle $x^{2}+y^{2}=5$ in the first quadrant, passes through the point :
(1) $\left(\frac{3}{4}, \frac{7}{4}\right)$
(2) $\left(-\frac{1}{3}, \frac{4}{3}\right)$
(3) $\left(\frac{1}{4}, \frac{3}{4}\right)$
(4) $\left(-\frac{1}{4}, \frac{1}{2}\right)$

Answer (1)

Sol. Intersection point of

$$
\begin{aligned}
& x^{2}+y^{2}=5, \quad y^{2}=4 x \\
\Rightarrow & x^{2}+4 x-5=0 \\
\Rightarrow & x^{2}+5 x-x-5=0 \\
\Rightarrow & x(x+5)-1(x+5)=0 \\
\therefore & x=1,-5
\end{aligned}
$$

Intersection point in $1^{\text {st }}$ quadrant be $(1,2)$ equation of tangent to $y^{2}=4 x$ at $(1,2)$ is

$$
\begin{align*}
& y \times 2=2(x+1) \\
\Rightarrow & y=x+1 \\
\Rightarrow & x-y+1=0 \tag{i}
\end{align*}
$$

$$
\left(\frac{3}{4}, \frac{7}{4}\right) \text { lies on }(i)
$$

9. If three distinct numbers a, b, c are in G.P. and the equations $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root, then which one of the following statements is correct?
(1) d, e, f are in A.P.
(2) $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in G.P.
(3) $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in A.P.
(4) d, e, f are in G.P.

Answer (3)

Sol. Since a, b, c are in G.P.
$\Rightarrow b^{2}=a c$
Given, $a x^{2}+2 b x+c=0$
$\Rightarrow a x^{2}+2 \sqrt{a c} x+c=0$
$\Rightarrow(\sqrt{a} x+\sqrt{c})^{2}=0$
$\Rightarrow \quad x=-\sqrt{\frac{\mathbf{c}}{\mathbf{a}}}$
$\because a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have common root

$$
\begin{aligned}
\Rightarrow & x=-\sqrt{\frac{c}{a}} \text { must satisfy } d x^{2}+2 e x+f=0 \\
\Rightarrow & d \cdot \frac{c}{a}+2 e\left(-\sqrt{\frac{c}{a}}\right)+f=0 \\
& \frac{d}{a}-\frac{2 e}{\sqrt{a c}}+\frac{f}{c}=0 \\
\Rightarrow & \frac{d}{a}-\frac{2 e}{b}+\frac{f}{c}=0 \\
\Rightarrow & \frac{2 e}{b}=\frac{d}{a}+\frac{f}{c} \\
\Rightarrow & \frac{d}{a}, \frac{e}{b}, \frac{f}{c} \text { are in A.P. }
\end{aligned}
$$

10. If $z=\frac{\sqrt{3}}{2}+\frac{i}{2}(i=\sqrt{-1})$, then $\left(1+i z+z^{5}+i z^{8}\right)^{9}$ is equal to :
(1) 0
(2) $(-1+2 i)^{9}$
(3) -1
(4) 1

Answer (3)
Sol. $z=\frac{\sqrt{3}}{2}+\frac{i}{2}=-i\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=-i \omega$
where ω is not real cube root of unity

$$
\begin{aligned}
\Rightarrow\left(1+i z+z^{5}+i z^{8}\right)^{9} & =\left(1+\omega-i \omega^{2}+i \omega^{2}\right)^{9} \\
& =(1+\omega)^{9} \\
& =\left(-\omega^{2}\right)^{9} \\
& =-\omega^{18} \\
& =-1
\end{aligned}
$$

11. The number of integral values of m for which the equation $\left(1+m^{2}\right) x^{2}-2(1+3 m) x+(1+8 m)=0$ has no real root is :
(1) Infinitely many
(2) 3
(3) 2
(4) 1

Answer (1)
Sol. $\left(1+m^{2}\right) x^{2}-2(1+3 m) x+(1+8 m)=0$
equation has no real solution
\Rightarrow D <0
$4(1+3 m)^{2}<4\left(1+m^{2}\right)(1+8 m)$
$1+9 m^{2}+6 m<1+8 m+m^{2}+8 m^{3}$

$$
\begin{aligned}
& 8 m^{3}-8 m^{2}+2 m>0 \\
& 2 m\left(4 m^{2}-4 m+1\right)>0 \\
& 2 m(2 m-1)^{2}>0
\end{aligned}
$$

$$
m>0, m \neq \frac{1}{2}
$$

\Rightarrow number of integral values of m are infinitely many.
12. Let the numbers $2, b, c$ be in an A.P. and $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & b & c \\ 4 & b^{2} & c^{2}\end{array}\right]$. If $\operatorname{det}(A) \in[2,16]$, then c lies in the interval :
(1) $[2,3)$
(2) $\left(2+2^{3 / 4}, 4\right)$
(3) $\left[3,2+2^{3 / 4}\right]$
(4) $[4,6]$

Answer (4)

Sol. $|A|=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & b & c \\ 4 & b^{2} & c^{2}\end{array}\right|$
$\mathrm{c}_{2} \rightarrow \mathrm{c}_{2}-\mathrm{c}_{1}, \mathrm{c}_{3} \rightarrow \mathrm{c}_{3}-\mathrm{c}_{1}$

$$
\begin{array}{r}
|A|=\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 & b-2 & c-2 \\
4 & (b-2)(b+2) & (c-2)(c+2)
\end{array}\right| \\
\\
\end{array}
$$

$2, b, c$ are in A.P. $\Rightarrow(b-2)=(c-b)=d, c-2=2 d$
$\Rightarrow|A|=d .2 d . d=2 d^{3}$
$\because|A| \in[2,16] \Rightarrow 1 \leq d^{3} \leq 8 \Rightarrow 1 \leq d \leq 2$
$4 \leq 2 d+2 \leq 6 \Rightarrow 4 \leq c \leq 6$
13. The minimum number of times one has to toss a fair coin so that the probability of observing at least one head is at least 90% is :
(1) 5
(2) 2
(3) 4
(4) 3

Answer (3)

Sol. $p=P(H)=\frac{1}{2}, q=1-p=\frac{1}{2}$
$P(x \geq 1) \geq \frac{9}{10}$
$1-P(x=0) \geq \frac{9}{10}$
$1-{ }^{n} C_{0}\left(\frac{1}{2}\right)^{n} \geq \frac{9}{10}$
$\frac{1}{2^{n}} \leq 1-\frac{9}{10} \Rightarrow \frac{1}{2^{n}} \leq \frac{1}{10}$
$2^{n} \geq 10 \quad \Rightarrow n \geq 4$
$\Rightarrow n_{\text {min }}=4$
14. Let $\overrightarrow{\mathbf{a}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+x \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$, for some real
x. Then $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=r$ is possible if :
(1) $3 \sqrt{\frac{3}{2}}<r<5 \sqrt{\frac{3}{2}}$
(2) $\sqrt{\frac{3}{2}}<r \leq 3 \sqrt{\frac{3}{2}}$
(3) $0<r \leq \sqrt{\frac{3}{2}}$
(4) $r \geq 5 \sqrt{\frac{3}{2}}$

Answer (4)
Sol. $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & x \\ 1 & -1 & 1\end{array}\right|$

$$
=(2+x) \hat{\mathbf{i}}+(x-3) \hat{\mathbf{j}}-5 \hat{\mathbf{k}}
$$

$$
|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=r=\sqrt{(2+x)^{2}+(x-3)^{2}+(-5)^{2}}
$$

$$
\Rightarrow r=\sqrt{4+x^{2}+4 x+x^{2}+9-6 x+25}
$$

$$
=\sqrt{2 x^{2}-2 x+38}=\sqrt{2\left(x^{2}-x+\frac{1}{4}\right)+38-\frac{1}{2}}
$$

$$
=\sqrt{2\left(x-\frac{1}{2}\right)^{2}+\frac{75}{2}}
$$

$$
\Rightarrow r \geq \sqrt{\frac{75}{2}} \Rightarrow r \geq 5 \sqrt{\frac{3}{2}}
$$

15. The $\operatorname{sum} \sum_{k=1}^{20} k \frac{1}{2^{k}}$ is equal to :
(1) $2-\frac{3}{2^{17}}$
(2) $1-\frac{11}{2^{20}}$
(3) $2-\frac{21}{2^{20}}$
(4) $2-\frac{11}{2^{19}}$

Answer (4)
Sol. $S=\sum_{k=1}^{20} k \cdot \frac{1}{2^{k}}$
$S=\frac{1}{2}+2 \cdot \frac{1}{2^{2}}+3 \cdot \frac{1}{2^{3}}+\ldots .+20 \cdot \frac{1}{2^{20}}$
$\frac{1}{2} S=\frac{1}{2^{2}}+2 \cdot \frac{1}{2^{3}}+\ldots .+19 \frac{1}{2^{20}}+20 \frac{1}{2^{21}}$
On subtracting

$$
\begin{aligned}
& \frac{S}{2}=\left(\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots .+\frac{1}{2^{20}}\right)-20 \frac{1}{2^{21}} \\
& =\frac{\frac{1}{2}\left(1-\frac{1}{2^{20}}\right)}{1-\frac{1}{2}}-20 \cdot \frac{1}{2^{21}}=1-\frac{1}{2^{20}}-10 \cdot \frac{1}{2^{20}} \\
& \frac{S}{2}=1-11 \cdot \frac{1}{2^{20}} \Rightarrow S=2-11 \cdot \frac{1}{2^{19}}=2-\frac{11}{2^{19}}
\end{aligned}
$$

16. Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, from this horizontal plane is :
(1) 16
(2) 18
(3) 15
(4) 12

Answer (1)

Sol.

equation of line $O B$ and $A C$ are respectively
$y=\frac{80}{x_{1}} x$
$\frac{x}{x_{1}}+\frac{y}{20}=1$
For intersection point, from equations (i) and (ii)
$\frac{y}{80}+\frac{y}{20}=1$
$\Rightarrow y+4 y=80$
$\Rightarrow y=16 m$
\Rightarrow Height of intersection point is 16 m
17. Let $f:[-1,3] \rightarrow R$ be defined as
$f(x)= \begin{cases}|x|+[x], & -1 \leq x<1 \\ x+|x|, & 1 \leq x<2 \\ x+[x], & 2 \leq x \leq 3,\end{cases}$
where [t] denotes the greatest integer less than or equal to t. Then, f is discontinuous at :
(1) Only one point
(2) Only two points
(3) Only three points
(4) Four or more points

Answer (3)

Sol. $\quad f(x)= \begin{cases}|x|+[x], & -1 \leq x<1 \\ x+|x|, & 1 \leq x<2 \\ x+[x], & 2 \leq x \leq 3\end{cases}$

$$
=\left\{\begin{array}{cc}
-x-1, & -1 \leq x<0 \\
x, & 0 \leq x<1 \\
2 x, & 1 \leq x<2 \\
x+2, & 2 \leq x<3 \\
6, & x=3
\end{array}\right.
$$

$\Rightarrow f(-1)=0, f\left(-1^{+}\right)=0$
$f\left(0^{-}\right)=-1, f(0)=0, f\left(0^{+}\right)=0$
$f\left(1^{-}\right)=1, f(1)=2, f\left(1^{+}\right)=2$
$f\left(2^{-}\right)=4, f(2)=4, f\left(2^{+}\right)=4$
$f\left(3^{-}\right)=5, f(3)=6$
$f(x)$ is discontinuous at $x=\{0,1,3\}$
18. Given that the slope of the tangent to a curve $y=y(x)$ at any point (x, y) is $\frac{2 y}{x^{2}}$. If the curve passes through the centre of the circle $x^{2}+y^{2}-2 x-2 y=0$, then its equation is
(1) $x \log _{e}|y|=-2(x-1)$
(2) $x \log _{e}|y|=x-1$
(3) $x \log _{e}|y|=2(x-1)$
(4) $x^{2} \log _{e}|y|=-2(x-1)$

Answer (3)
Sol. $\frac{d y}{d x}=\frac{2 y}{x^{2}} \Rightarrow \int \frac{d y}{y}=2 \int \frac{d x}{x^{2}}$
$\Rightarrow \ln |y|=-\frac{2}{x}+C$
(i) passes through $(1,1)$
$\Rightarrow \mathrm{C}=2$
$\Rightarrow \ln |y|=-\frac{2}{x}+2$

$$
\begin{aligned}
& x \ln |y|=-2+2 x \\
& x \ln |y|=-2(1-x)=2(x-1)
\end{aligned}
$$

19. Suppose that the points $(h, k),(1,2)$ and $(-3,4)$ lie on the line L_{1}. If a line L_{2} passing through the points (h, k) and $(4,3)$ is perpendicular to L_{1}, then $\frac{k}{h}$ equals
(1) 3
(2) $-\frac{1}{7}$
(3) 0
(4) $\frac{1}{3}$

Answer (4)
Sol. (h, k), (1, 2) and ($-3,4$) and collinear

$$
\begin{align*}
& \left|\begin{array}{ccc}
h & k & 1 \\
1 & 2 & 1 \\
-3 & 4 & 1
\end{array}\right|=0 \Rightarrow-2 h-4 k+10=0 \\
& \Rightarrow h+2 k=5 \tag{i}\\
& \quad m_{L_{1}}=\frac{4-2}{-3-1}=\frac{2}{-4}=-\frac{1}{2} \Rightarrow m_{L_{2}}=2 \\
& \Rightarrow m_{L_{2}}=\frac{k-3}{h-4}=2 \Rightarrow k-3=2 h-8 \\
& 2 h-k=5 \tag{ii}
\end{align*}
$$

from (i) and (ii)
$h=3, k=1 \Rightarrow \frac{k}{h}=\frac{1}{3}$
20. Let $\mathbf{S}(\alpha)=\left\{(x, y): y^{2} \leq x, 0 \leq x \leq \alpha\right\}$ and $\mathbf{A}(\alpha)$ is area of the region $S(\alpha)$. If for a $\lambda, 0<\lambda<4$, $A(\lambda): A(4)=2: 5$, then λ equals
(1) $2\left(\frac{2}{5}\right)^{\frac{1}{3}}$
(2) $2\left(\frac{4}{25}\right)^{\frac{1}{3}}$
(3) $4\left(\frac{2}{5}\right)^{\frac{1}{3}}$
(4) $4\left(\frac{4}{25}\right)^{\frac{1}{3}}$

Answer (4)
Sol.

$$
\begin{aligned}
& \mathbf{A}(\lambda)=2 \times \frac{2}{3}(\lambda \times \sqrt{\lambda})=\frac{4}{3} \lambda^{3 / 2} \\
& \Rightarrow \quad \frac{A(\lambda)}{A(4)}=\frac{2}{5} \quad \Rightarrow \frac{\lambda^{3 / 2}}{8}=\frac{2}{5} \\
& \lambda=\left(\frac{16}{5}\right)^{2 / 3}=4 .\left(\frac{4}{25}\right)^{1 / 3}
\end{aligned}
$$

21. If a point $R(4, y, z)$ lies on the line segment joining the points $\mathrm{P}(2,-3,4)$ and $\mathrm{Q}(8,0,10)$, then the distance of R from the origin is
(1) $\sqrt{53}$
(2) $2 \sqrt{21}$
(3) 6
(4) $2 \sqrt{14}$

Answer (4)
Sol. P, Q, R are collinear

$$
\begin{aligned}
& \Rightarrow \overrightarrow{P R}=\lambda \overrightarrow{P Q} \\
& 2 \hat{\mathbf{i}}+(y+3) \hat{\mathbf{j}}+(z-4) \hat{\mathbf{k}}=\lambda[6 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}] \\
& \Rightarrow 6 \lambda=2, y+3=3 \lambda, z-4=6 \lambda \\
& \Rightarrow \lambda=\frac{1}{3}, y=-2, z=6 \\
& \Rightarrow \text { point } \mathrm{R}(4,-2,6) \\
& \Rightarrow \mathrm{OR}=\sqrt{(4)^{2}+(-2)^{2}+(6)^{2}}=\sqrt{16+4+36} \\
&=\sqrt{56}=2 \sqrt{14}
\end{aligned}
$$

22. If the lengths of the sides of a triangle are in A.P. and the greatest angle is double the smallest, then a ratio of lengths of the sides of this triangle is
(1) $4: 5: 6$
(2) $3: 4: 5$
(3) $5: 9: 13$
(4) $5: 6: 7$

Answer (1)

Sol. Let a > b > c

$$
\begin{align*}
& \because A=2 C \\
& \Rightarrow A+B+C=\pi \\
& \Rightarrow B=\pi-3 C \\
& \because A+c=2 b \\
& \Rightarrow \sin A+\sin C=2 \sin B \tag{ii}\\
& \Rightarrow \sin A=\sin (2 C), \sin B=\sin 3 C \\
& \Rightarrow \text { From (ii), } \sin 2 C+\sin C=2 \sin 3 C \\
& \\
& \quad(2 \cos C+1) \sin C=2 \sin C\left(3-4 \sin ^{2} C\right) \\
& \Rightarrow 2 \cos ^{2} C+1=6-8\left(1-\cos ^{2} C\right) \\
& \Rightarrow \\
& 8 \cos ^{2} C-2 \cos C-3=0 \\
& \Rightarrow \\
& \Rightarrow \cos C=\frac{3}{4} \text { or } \cos C=-\frac{1}{2}
\end{align*}
$$

$\because \quad$ C is acute angle
$\Rightarrow \quad \cos C=\frac{3}{4}, \sin A=2 \sin C \cos C=2 \times \frac{\sqrt{7}}{4} \times \frac{3}{4}$
$\Rightarrow \quad \sin C=\frac{\sqrt{7}}{4}, \sin B=\frac{3 \sqrt{7}}{4}-\frac{4 \sqrt{7}}{4} \times \frac{7}{16}=\frac{5 \sqrt{7}}{16}$
$\Rightarrow \sin A: \sin B: \sin C:: a: b: c$ is $6: 5: 4$
23. The height of a right circular cylinder of maximum volume inscribed in a sphere of radius 3 is
(1) $\frac{2}{3} \sqrt{3}$
(2) $2 \sqrt{3}$
(3) $\sqrt{3}$
(4) $\sqrt{6}$

Answer (2)
Sol. Let radius of base and height of cylinder be r and h respectively.

$\therefore \quad r^{2}+\frac{h^{2}}{4}=9$
\because Volume of cylinder

$$
\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}
$$

$$
\mathrm{V}=\pi \mathrm{h}\left(9-\frac{\mathrm{h}^{2}}{4}\right)
$$

$$
V=9 \pi h-\frac{\pi}{4} h^{3}
$$

$\therefore \quad \frac{\mathrm{dV}}{\mathrm{dh}}=9 \pi-\frac{3}{4} \pi \mathrm{~h}^{2}$
For maxima/minima

$$
\begin{aligned}
\frac{d V}{d h} & =0 \\
\Rightarrow \quad h & =\sqrt{12}
\end{aligned}
$$

$$
\text { and } \frac{d^{2} V}{d h^{2}}=-\frac{3}{2} \pi h
$$

$$
\therefore\left(\frac{d^{2} v}{d h^{2}}\right)_{h=\sqrt{12}}<0
$$

\Rightarrow Volume is maximum when $h=2 \sqrt{3}$
24. If the system of linear equations
$x-2 y+k z=1$
$2 x+y+z=2$
$3 x-y-k z=3$
has a solution (x, y, z), $z \neq 0$, then (x, y) lies on the straight line whose equation is
(1) $3 x-4 y-4=0$
(2) $3 x-4 y-1=0$
(3) $4 x-3 y-1=0$
(4) $4 x-3 y-4=0$

Answer (4)

Sol. $x-2 y+k z=1,2 x+y+z=2,3 x-y-k z=3$
$\Delta=\left|\begin{array}{ccc}1 & -2 & k \\ 2 & 1 & 1 \\ 3 & -1 & -k\end{array}\right|=1(-k+1)+2(-2 k-3)+k(-2-3)$
$=-k+1-4 k-6-5 k=-10 k-5=-5(2 k+1)$
$\Delta_{1}=\left|\begin{array}{ccc}1 & -2 & k \\ 2 & 1 & 1 \\ 3 & -1 & -k\end{array}\right|=-5(2 k+1)$
$\Delta_{2}=\left|\begin{array}{ccc}1 & 1 & k \\ 2 & 2 & 1 \\ 3 & 3 & -k\end{array}\right|=0, \Delta_{3}=\left|\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 2 \\ 3 & -1 & 3\end{array}\right|=0$
$\because \quad z \neq 0$
$\Rightarrow \Delta=0$
$\Rightarrow \mathrm{k}=-\frac{1}{2}$
\therefore System of equation has infinite many solutions.

Let $\mathrm{z}=\lambda \neq 0$ then $\mathrm{x}=\frac{10-3 \lambda}{10}$ and $\mathrm{y}=-\frac{2 \lambda}{5}$
$\therefore \quad(x, y)$ must lie on line $4 x-3 y-4=0$
25. If $f(1)=1, f^{\prime}(1)=3$, then the derivative of $f(f(f(x)))+(f(x))^{2}$ at $x=1$ is :
(1) 33
(2) 12
(3) 9
(4) 15

Answer (1)
Sol. Let $g(x)=f(f(f(x)))+(f(x))^{2}$
On differentiating both sides w.r.t. x we get

$$
\begin{aligned}
g^{\prime}(x) & =f^{\prime}(f(f(x))) f^{\prime}(f(x)) f^{\prime}(x)+2 f(x) f^{\prime}(x) \\
g^{\prime}(1) & =f^{\prime}(f(f(1))) f^{\prime}(f(1)) f^{\prime}(1)+2 f(1) f^{\prime}(1) \\
& =f^{\prime}(f(1)) f^{\prime}(1) f^{\prime}(1)+2 f(1) f^{\prime}(1) \\
& =3 \times 3 \times 3+2 \times 1 \times 3=27+6=33
\end{aligned}
$$

26. Let $f(x)=\int_{0}^{x} g(t) d t$, where g is a non-zero even function. If $f(x+5)=g(x)$, then $\int_{0}^{x} f(t) d t$, equals:
(1) $\int_{x+5}^{5} g(t) d t$
(2) $2 \int_{5}^{x+5} g(t) d t$
(3) $\int_{5}^{x+5} g(t) d t$
(4) $5 \int_{x+5}^{5} g(t) d t$

Answer (1)

Sol. $f(x)=\int_{0}^{x} g(t) d t$,
$g(-x)=g(x)$,
$f(x+5)=g(x)$
From (i)
$f^{\prime}(x)=g(x)$
Let $I=\int_{0}^{x} f(t) d t$,
Put $t=\lambda-5$
$\Rightarrow I=\int_{5}^{x+5} f(\lambda-5) d \lambda$
$\because f(x+5)=g(x)$
$\Rightarrow f(-x+5)=g(-x)=g(x)$

$$
\begin{align*}
& I=\int_{5}^{x+5} f(\lambda-5) d \lambda \tag{iv}\\
& I=\int_{5}^{x+5}-f(5-\lambda) d \lambda \\
& \quad(\because f(0)=0, g(x) \text { is even } \Rightarrow f(x) \text { is odd) } \\
& I=-\int_{5}^{x+5} g(\lambda) d \lambda=\int_{x+5}^{5} g(t) d t \quad \text { (from (iv)) }
\end{align*}
$$

27. Let $f(x)=a^{x}(a>0)$ be written as $f(x)=f_{1}(x)+f_{2}(x)$, where $f_{1}(x)$ is an even function and $f_{2}(x)$ is an odd function. Then $f_{1}(x+y)+f_{1}(x-y)$ equals:
(1) $2 f_{1}(x) f_{1}(y)$
(2) $2 f_{1}(x+y) f_{1}(x-y)$
(3) $2 f_{1}(x+y) f_{2}(x-y)$
(4) $2 f_{1}(x) f_{2}(y)$

Answer (1)
Sol. $f(x)=a^{x}=\left(\frac{a^{x}+a^{-x}}{2}\right)+\left(\frac{a^{x}-a^{-x}}{2}\right)$
where $f_{1}(x)=\frac{a^{x}+a^{-x}}{2}$ is even function

$$
\begin{aligned}
f_{2}(x) & =\frac{a^{x}-a^{-x}}{2} \text { is odd function } \\
\Rightarrow f_{1}(x+y) & +f_{1}(x-y) \\
& =\left(\frac{a^{x+y}+a^{-x-y}}{2}\right)+\left(\frac{a^{x-y}+a^{-x+y}}{2}\right) \\
& =\frac{1}{2}\left[a^{x}\left(a^{y}+a^{-y}\right)+a^{-x}\left(a^{y}+a^{-y}\right)\right] \\
& =\frac{\left(a^{x}+a^{-x}\right)\left(a^{y}+a^{-y}\right)}{2} \\
& =2 f_{1}(x) \cdot f_{1}(y)
\end{aligned}
$$

28. If $\int \frac{d x}{x^{3}\left(1+x^{6}\right)^{2 / 3}}=x f(x)\left(1+x^{6}\right)^{\frac{1}{3}}+C$ where C is a constant of integration, then the function $f(x)$ is equal to:
(1) $-\frac{1}{2 x^{3}}$
(2) $\frac{3}{x^{2}}$
(3) $-\frac{1}{6 x^{3}}$
(4) $-\frac{1}{2 x^{2}}$

Answer (1)
Sol. $I=\int \frac{d x}{x^{3}\left(1+x^{6}\right)^{2 / 3}}=\int \frac{d x}{x^{7}\left(1+x^{-6}\right)^{2 / 3}}$
Put $1+x^{-6}=t^{3}$
$\Rightarrow-6 x^{-7} d x=3 t^{2} d t$
$\Rightarrow \frac{d x}{x^{7}}=-\frac{1}{2} t^{2} d t$
$\Rightarrow \mathrm{I}=\int-\frac{1}{2} \frac{\mathrm{t}^{2} \mathrm{dt}}{\mathrm{t}^{2}}$
$=-\frac{1}{2} t+C$
$=-\frac{1}{2}\left(1+x^{-6}\right)^{\frac{1}{3}}+C$
$=-\frac{1}{2} \frac{\left(1+x^{6}\right)^{\frac{1}{3}}}{x^{2}}+C$

$$
=-\frac{1}{2 x^{3}} \times\left(1+x^{6}\right)^{\frac{1}{3}}+C
$$

$\Rightarrow f(x)=-\frac{1}{2 x^{3}}$
29. If the eccentricity of the standard hyperbola passing through the point $(4,6)$ is 2 , then the equation of the tangent to the hyperbola at $(4,6)$ is:
(1) $2 x-3 y+10=0$
(2) $x-2 y+8=0$
(3) $3 x-2 y=0$
(4) $2 x-y-2=0$

Answer (4)
Sol. Let equation of hyperbola be

$$
\begin{align*}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \tag{i}\\
\Rightarrow & b^{2}=a^{2}\left(e^{2}-1\right) \\
\because & e=2 \Rightarrow \quad b^{2}=3 a^{2} \tag{ii}
\end{align*}
$$

(i) passes through $(4,6)$
$\Rightarrow \frac{16}{\mathrm{a}^{2}}-\frac{36}{\mathrm{~b}^{2}}=1$
From (ii) and (iii)

$$
\begin{aligned}
& a^{2}=4, b^{2}=12 \\
\Rightarrow & \text { Equation of hyperbola is } \frac{x^{2}}{4}-\frac{y^{2}}{12}=1
\end{aligned}
$$

Equation of tangent to the hyperbola at $(4,6)$ is
$\frac{4 x}{4}-\frac{6 y}{12}=1$
$\Rightarrow \quad x-\frac{y}{2}=1$
$\Rightarrow 2 x-y=2$
30. Let $f: R \rightarrow R$ be a differentiable function satisfying $f^{\prime}(3)+f^{\prime}(2)=0$.

Then $\lim _{x \rightarrow 0}\left(\frac{1+f(3+x)-f(3)}{1+f(2-x)-f(2)}\right)^{\frac{1}{x}}$ is equal to:
(1) e
(2) 1
(3) e^{2}
(4) e^{-1}

Answer (2)
Sol. I $=\lim _{x \rightarrow 0}\left(\frac{1+f(3+x)-f(3)}{1+f(2-x)-f(2)}\right)^{\frac{1}{x}}$
form : 1^{∞}
$\Rightarrow \mathrm{I}=\mathrm{e}^{\mathrm{l}_{1}}$, where

$$
\begin{aligned}
I_{1} & =\lim _{x \rightarrow 0}\left(\left(\frac{1+f(3+x)-f(3)}{1+f(2-x)-f(2)}-1\right) \frac{1}{x}\right) \\
& =\lim _{x \rightarrow 0}\left(\left(\frac{f(3+x)-f(3)-f(2-x)+f(2)}{1+f(2-x)-f(2)}\right) \frac{1}{x}\right)
\end{aligned}
$$

form : $\frac{\mathbf{0}}{\mathbf{0}}$
Using L.H. Rule

$$
\begin{aligned}
& I_{1}=\lim _{x \rightarrow 0}\left(\frac{f^{\prime}(3+x)+f^{\prime}(2-x)}{1}\right) \cdot \lim _{x \rightarrow 0}\left(\frac{1}{1+f(2-x)-f(2)}\right) \\
&=f^{\prime}(3)+f^{\prime}(2)=0 \\
& \Rightarrow I=e^{l_{1}}=1
\end{aligned}
$$

