PART-III : MATHEMATICS

SECTION - 1 (Maximum Marks : 24)

- This section contains **SIX (06)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated <u>according to the following marking scheme:</u>
 - Full Marks
 : +4
 If only (all) the correct option(s) is(are) chosen;
 - *Partial Marks* : +3 If all the four options are correct but ONLY three options are chosen;
 - Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
 - *Partial Marks* : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
 - Zero Marks : 0 If unanswered;
 - *Negative Marks* : 2 In all other cases.
- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then choosing ONLY (A), (B) and (D) will get +4 marks;
 - choosing ONLY (A) and (B) will get +2 marks;
 - choosing ONLY (A) and (D) will get +2 marks;
 - choosing ONLY (B) and (D) will get +2 marks;
 - choosing ONLY (A) will get +1 mark;
 - choosing ONLY (B) will get +1 mark;
 - choosing ONLY (D) will get +1 mark;

choosing no option(s) (i.e. the question is unanswered) will get 0 marks and

choosing any other option(s) will get "2 marks.

1. Let $S_1 = \{(i, j, k) : i, j, k \in \{1, 2, ..., 10\}\},\$

 $S_2 = \{(i, j) : 1 \le i < j + 2 \le 10, i, j \in \{1, 2, \dots, 10\}\},\$

$$S_3 = \{(i, j, k, l) : 1 \le i < j < k < l, i, j, k, l \in \{1, 2, ..., 10\}\},\$$

and

 $S_4 = \{(i, j, k, l) : i, j, k \text{ and } l \text{ are distinct elements in } \{1, 2, ..., 10\}\}.$

If the total number of elements in the set S_r is n_r , r = 1, 2, 3, 4, then which of the following statements is (are) TRUE?

- (A) $n_1 = 1000$ (B) $n_2 = 44$
- (C) $n_3 = 220$ (D) $\frac{n_4}{12} = 420$

Answer (A,B,D)

Sol. Number of elements in $S_1 = 10 \times 10 \times 10 = 1000$ Number of elements in $S_2 = 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 = 44$ Number of elements in $S_3 = {}^{10}C_4 = 210$ Number of elements in $S_4 = {}^{10}P_4 = 210 \times 4! = 5040$ 2. Consider a triangle *PQR* having sides of lengths *p*,*q* and *r* opposite to the angles *P*, *Q* and *R*, respectively. Then which of the following statements is (are) TRUE ?

(A)
$$\cos P \ge 1 - \frac{p^2}{2qr}$$

(B) $\cos R \ge \left(\frac{q-r}{p+q}\right) \cos P + \left(\frac{p-r}{p+q}\right) \cos Q$
(C) $\frac{q+r}{p} < 2 \frac{\sqrt{\sin Q \sin R}}{\sin P}$

(D) If
$$p < q$$
 and $p < r$, then $\cos Q > \frac{p}{r}$ and $\cos R > \frac{p}{q}$

$$= \cos R + \frac{r-q-p}{p+q} \le \cos R \quad (\because r < p+q)$$

(C)
$$\frac{q+r}{p} = \frac{\sin Q + \sin R}{\sin P} \ge \frac{2\sqrt{\sin Q \cdot \sin R}}{\sin P}$$

(D) If p < q and q < r

So, p is the smallest side, therefore one of Q or R can be obtuse

So, one of cosQ or cosR can be negative

Therefore $\cos Q > \frac{p}{r}$ and $\cos R > \frac{p}{q}$ cannot hold always.

3. Let $f:\left[-\frac{\pi}{2},\frac{\pi}{2}\right] \to \mathbb{R}$ be a continuous function such that f(0) = 1 and $\int_{0}^{\frac{\pi}{3}} f(t)dt = 0$ Then which of the following statements is (are) TRUE?

- (A) The equation $f(x) 3\cos 3x = 0$ has at least one solution in $\left(0, \frac{\pi}{3}\right)$
- (B) The equation $f(x) 3\sin 3x = -\frac{6}{\pi}$ has at least one solution in $\left(0, \frac{\pi}{3}\right)$

(C)
$$\lim_{x \to 0} \frac{x \int_{0}^{x} f(t) dt}{1 - e^{x^{2}}} = -1$$

(D)
$$\lim_{x \to 0} \frac{\sin x \int_{0}^{x} f(t) dt}{x^{2}} = -1$$

Answer (A,B,C)

Sol.
$$f(0) = 1$$
, $\int_0^{\frac{\pi}{3}} f(t) dt = 0$

(A) Consider a function $g(x) = \int_0^x f(t) dt - \sin 3x$

g(x) is continuous and differentiable function and g(0) = 0

$$g\left(\frac{\pi}{3}\right) = 0$$

By Rolle's theorem g'(x) = 0 has at least one solution in $\left(0, \frac{\pi}{3}\right)$

$$f(x) - 3\cos 3x = 0$$
 for some $x \in \left(0, \frac{\pi}{3}\right)$

(B) Consider a function

$$h(x) = \int_0^x f(t)dt + \cos 3x + \frac{6}{\pi}x$$

h(x) is continuous and differentiable function

and h(0) = 1

$$h\left(\frac{\pi}{3}\right) = 1$$

By Rolle's theorem h'(x) = 0 for at least one $x \in \left(0, \frac{\pi}{3}\right)$

$$f(x) - 3\sin 3x + \frac{6}{\pi} = 0$$
 for some $x \in \left(0, \frac{\pi}{3}\right)$

(C)
$$\lim_{x \to 0} \frac{x \int_0^x f(t) dt}{1 - e^{x^2}} , \left(\frac{0}{0} \text{ form}\right)$$

By L' Hopital rule

$$\lim_{x \to 0} \frac{xf(x) + \int_{0}^{x} f(t)dt}{-2xe^{x^{2}}}, \left(\frac{0}{0} \text{ form}\right)$$

$$= \lim_{x \to 0} \frac{xf'(x) + f(x) + f(x)}{-4x^{2}e^{x^{2}} - 2e^{x^{2}}} = \frac{0 + 2f(0)}{-0 - 2} = -1$$
(D)
$$\lim_{x \to 0} \frac{\sin x \int_{0}^{x} f(t)dt}{x^{2}}, \left(\frac{0}{0} \text{ form}\right)$$

$$= \lim_{x \to 0} \frac{\sin x \cdot f(x) + \cos x \int_{0}^{x} f(t)dt}{2x}$$

$$= \lim_{x \to 0} \frac{\left(\cos x \cdot f(x) + \sin x \cdot f'(x) + \cos x \cdot f(x) - \sin x \cdot \int_{0}^{x} f(t)dt\right)}{2}$$

$$= \frac{1 + 0 + 1 - 0}{2}$$

- 4. For any real numbers α and β , let $y_{\alpha\beta}(x)$, $x \in \mathbb{R}$, be the solution of the differential equation $\frac{dy}{dx} + \alpha y = xe^{\beta x}$, y(1) = 1
 - Let $S = \{y_{\alpha,\beta}(x) : \alpha, \beta \in \mathbb{R}\}$. Then which of the following functions belong(s) to the set S?

(A)
$$f(x) = \frac{x^2}{2}e^{-x} + \left(e - \frac{1}{2}\right)e^{-x}$$

(B)
$$f(x) = -\frac{x^2}{2}e^{-x} + \left(e + \frac{1}{2}\right)e^{-x}$$

(C)
$$f(x) = \frac{e^x}{2}\left(x - \frac{1}{2}\right) + \left(e - \frac{e^2}{4}\right)e^{-x}$$

(D)
$$f(x) = \frac{e^x}{2}\left(\frac{1}{2} - x\right) + \left(e + \frac{e^2}{4}\right)e^{-x}$$

$$\overline{Answer (A, C)}$$

Sol.
$$\frac{dy}{dx} + \alpha y = xe^{\beta x}$$

Integrating factor (I.F.) =
$$e^{\int \alpha dx} = e^{\alpha x}$$

So, the solution is $y \cdot e^{\alpha x} = \int xe^{\beta x} \cdot e^{\alpha x} dx$

$$ye^{\alpha x} = \int xe^{(\alpha + \beta)x} dx$$

If $\alpha + \beta \neq 0$

$$ye^{\alpha x} = x \frac{e^{(\alpha+\beta)x}}{(\alpha+\beta)} - \frac{e^{(\alpha+\beta)x}}{(\alpha+\beta)^2} + C$$

$$y = \frac{xe^{\beta x}}{(\alpha+\beta)} - \frac{e^{\beta x}}{(\alpha+\beta)^2} + Ce^{-\alpha x}$$

$$y = \frac{e^{\beta x}}{(\alpha+\beta)} \left(x - \frac{1}{\alpha+\beta}\right) + Ce^{-\alpha x} \qquad \dots (i)$$
Put $\alpha = \beta = 1$ in (i)
$$y = \frac{e^x}{2} \left(x - \frac{1}{2}\right) + Ce^{-x}$$

$$y(1) = 1$$

$$1 = \frac{e}{2} \times \frac{1}{2} + \frac{C}{e} \Rightarrow C = e - \frac{e^2}{4}$$
So, $y = \frac{e^x}{2} \left(x - \frac{1}{2}\right) + \left(e - \frac{e^2}{4}\right)e^{-x}$
If $\alpha + \beta = 0$ & $\alpha = 1$

$$\frac{dy}{dx} + y = xe^{-x}$$
I.F. $= e^x$

$$ye^x = \int xdx$$

$$ye^x = \frac{x^2}{2} + C$$

$$y = \frac{x^2}{2}e^{-x} + Ce^{-x}$$

$$y(1) = 1$$

$$1 = \frac{1}{2e} + \frac{C}{e} \Rightarrow C = e - \frac{1}{2}$$

$$y = \frac{x^2}{2}e^{-x} + \left(e - \frac{1}{2}\right)e^{-x}$$

5. Let O be the origin and $\overrightarrow{OA} = 2\hat{i} + 2\hat{j} + \hat{k}$, $\overrightarrow{OB} = \hat{i} - 2\hat{j} + 2\hat{k}$ and $\overrightarrow{OC} = \frac{1}{2}(\overrightarrow{OB} - \lambda\overrightarrow{OA})$ for some $\lambda > 0$. If

 $\left|\overrightarrow{OB} \times \overrightarrow{OC}\right| = \frac{9}{2}$, then which of the following statements is (are) TRUE ?

- (A) Projection of \overrightarrow{OC} on \overrightarrow{OA} is $-\frac{3}{2}$
- (B) Area of the triangle *OAB* is $\frac{9}{2}$
- (C) Area of the triangle ABC is $\frac{9}{2}$
- (D) The acute angle between the diagonals of the parallelogram with adjacent sides \overrightarrow{OA} and \overrightarrow{OC} is $\frac{\pi}{3}$

Answer (A,B,C)

JEE (ADVANCED)-2021 (Paper-2)

Sol.
$$OA = 2\hat{i} + 2\hat{j} + \hat{k}$$

 $\overline{OB} = \hat{i} - 2\hat{j} + 2\hat{k}$
 $\overline{OC} = \frac{1}{2}(\overline{OB} - \lambda\overline{OA})$
 $\overline{OB} \times \overline{OC} = \overline{OB} \times \frac{1}{2}(\overline{OB} - \lambda\overline{OA}) = -\frac{\lambda}{2}\overline{OB} \times \overline{OA} = \frac{\lambda}{2}(\overline{OA} \times \overline{OB})$
Now, $\overline{OA} \times \overline{OB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & 1 \\ 1 & -2 & 2 \end{vmatrix} = 6\hat{i} - 3\hat{j} - 6\hat{k}$
So, $\overline{OB} \times \overline{OC} = \frac{3\lambda}{2}(2\hat{i} - \hat{j} - 2\hat{k})$
 $\left|\overline{OB} \times \overline{OC}\right| = \left|\frac{9\lambda}{2}\right| = \frac{9}{2}$
So, $\lambda = 1$ ($\because \lambda > 0$)
 $\overline{OC} = \frac{1}{2}(\overline{OB} - \overline{OA})$
 $\overline{OC} = \frac{1}{2}(-\hat{i} - 4\hat{j} + \hat{k})$
(A) Projection of \overline{OC} on $\overline{OA} = \frac{\overline{OC} \cdot \overline{OA}}{|\overline{OA}|} = \frac{\frac{1}{2}(-2 - 8 + 1)}{3} = -\frac{3}{2}$
(B) Area of the triangle $OAB = \frac{1}{2}|\overline{OA} \times \overline{OB}| = \frac{9}{2}$

(C) Area of the triangle ABC is
$$=\frac{1}{2}\left|\overrightarrow{AB}\times\overrightarrow{AC}\right| = \frac{1}{2}\left|\begin{vmatrix}\hat{i} & \hat{j} & \hat{k}\\ -1 & -4 & 1\\ -\frac{5}{2} & -4 & -\frac{1}{2}\end{vmatrix}\right| = \frac{1}{2}\left|6\hat{i}-3\hat{j}-6\hat{k}\right| = \frac{9}{2}$$

(D) Acute angle between the diagonals of the parallelogram with adjacent sides \overrightarrow{OA} and $\overrightarrow{OC} = \theta$

$$\frac{(\overrightarrow{OA} + \overrightarrow{OC}) \cdot (\overrightarrow{OA} - \overrightarrow{OC})}{\left| \overrightarrow{OA} + \overrightarrow{OC} \right| \left| \overrightarrow{OA} - \overrightarrow{OC} \right|} = \cos \theta$$

$$\cos \theta = \frac{\left(\frac{3}{2}\hat{i} + \frac{3}{2}\hat{k} \right) \left(\frac{5}{2}\hat{i} + 4\hat{j} + \frac{1}{2}\hat{k} \right)}{\frac{3}{2}\sqrt{2} \times \sqrt{\frac{90}{4}}} = \frac{18}{3\sqrt{2}\sqrt{90}}$$

$$\theta \neq \frac{\pi}{3}$$

- 6. Let *E* denote the parabola $y^2 = 8x$. Let P = (-2, 4), and let *Q* and *Q'* be two distinct points on *E* such that the lines *PQ* and *PQ'* are tangents to *E*. Let *F* be the focus of *E*. Then which of the following statements is (are) TRUE ?
 - (A) The triangle *PFQ* is a right-angled triangle
 - (B) The triangle QPQ' is a right-angled triangle
 - (C) The distance between *P* and *F* is $5\sqrt{2}$
 - (D) F lies on the line joining Q and Q'

Answer (A,B,D) Sol. $E: y^2 = 8x$ P: (-2, 4)P(-2,4)

Point P (-2, 4) lies on directrix (x = -2) of parabola $y^2 = 8x$

So, $\angle QPQ' = \frac{\pi}{2}$ and chord QQ' is a focal chord and segment PQ subtends right angle at the focus. Slope of $QQ' = \frac{2}{t_1 + t_2} = 1$ Slope of PF = -1

 $PF = 4\sqrt{2}$

x = -2

SECTION - 2 (Maximum Marks : 12)

- This section contains **THREE (03)** question stems.
- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	:	+2	If ONLY the correct numerical value is entered.
Zero Marks		0	In all other cases

Question Stem for Question Nos. 7 and 8

Consider the region $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \ge 0 \text{ and } y^2 \le 4 - x\}$. Let *F* be the family of all circles that are contained in *R* and have centers on the *x*-axis. Let *C* be the circle that has largest radius among the circles in *F*. Let (α, β) be a point where the circle *C* meets the curve $y^2 = 4 - x$.

7. The radius of the circle C is _____.

Answer (1.50)

8. The value of α is _____.

Answer (2.00)

Sol. For comprehension Q7 & Q8

Let the circle be,

 $(x-a)^2 + y^2 = r^2$

Solving it with parabola

 $y^{2} = 4 - x \text{ we get}$ $(x - a)^{2} + 4 - x = r^{2}$ $\Rightarrow x^{2} - x(2a + 1) + (a^{2} + 4 - r^{2}) = 0 \qquad \dots(1)$ D = 0 $\Rightarrow 4r^{2} + 4a - 15 = 0$ Clearly $a \ge r$ So $4r^{2} + 4r - 15 \le 0$ $\Rightarrow r_{max} = \frac{3}{2} = a$ Radius of circle *C* is $\frac{3}{2}$ From (1) $x^{2} - 4x + 4 = 0$ $\Rightarrow x = 2 = \alpha$

Question Stem for Question Nos. 9 and 10

Let $f_1: (0, \infty) \to \mathbb{R}$ and $f_2: (0, \infty) \to \mathbb{R}$ be defined by $f_1(x) = \int_0^x \prod_{j=1}^{21} (t-j)^j dt, x > 0$

and $f_2(x) = 98(x-1)^{50} - 600(x-1)^{49} + 2450$, x > 0, where, for any positive integer *n* and real number $a_1, a_2,...a_n$, $\prod_{i=1}^n a_i$ denotes the product of $a_1, a_2,...a_n$. Let m_i and n_i , respectively, denote the number of points of local minima and the number of points of local maxima of function f_i , i = 1, 2, in the interval $(0, \infty)$.

Solution for Q9 and 10

$$f'_{1}(x) = \prod_{j=1}^{21} (x-j)^{j}$$

$$f'_{1}(x) = (x-1)(x-2)^{2}(x-3)^{3},..., (x-20)^{20}(x-21)^{21}$$
Checking the sign scheme of $f'_{1}(x)$ at $x = 1, 2, 3, ..., 21$, we get
$$f_{1}(x)$$
 has local minima at $x = 1, 5, 9, 13, 17, 21$ and local maxima at $x = 3, 7, 11, 15, 19$

$$\Rightarrow m_{1} = 6, n_{1} = 5$$

$$f_{2}(x) = 98(x-1)^{50} - 600(x-1)^{49} + 2450$$

$$f'_{2}(x) = 98 \times 50(x-1)^{49} - 600 \times 49 \times (x-1)^{48}$$

$$= 98 \times 50 \times (x-1)^{48} (x-7)$$

$$f_{2}(x)$$
 has local minimum at $x = 7$ and no local maximum.
$$\Rightarrow m_{2} = 1, n_{2} = 0$$
9. The value of $2m_{1} + 3n_{1} + m_{1}n_{1}$ is _____.

Sol.
$$2m_1 + 3n_1 + m_1n_1$$

= 2 × 6 + 3 × 5 + 6 × 5
= 57

The value of $6m_2 + 4n_2 + 8m_2n_2$ is _____. 10.

Answer (06.00)

9.

Sol.
$$6m_2 + 4n_2 + 8m_2n_2$$

= 6 × 1 + 4 × 0 + 8 × 1 × 0 = 6

Question Stem for Question Nos. 11 and 12

Let $g_i: \left[\frac{\pi}{8}, \frac{3\pi}{8}\right] \rightarrow \mathbb{R}, i = 1, 2, \text{ and } f: \left[\frac{\pi}{8}, \frac{3\pi}{8}\right] \rightarrow \mathbb{R}$ be functions such that $g_1(x) = 1, g_2(x) = |4x - \pi|$ and $f(x) = \frac{3\pi}{8}$ sin²x, for all $x \in \left[\frac{\pi}{8}, \frac{3\pi}{8}\right]$. Define $S_i = \int_{\frac{\pi}{2}}^{\frac{3\pi}{8}} f(x) \cdot g_i(x) dx$, i = 1, 2

The value of $\frac{16S_1}{\pi}$ is _____. 11.

Answer (U2. Sol. $S_1 = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^2 x \cdot 1 dx$ $=\frac{1}{2}\int_{\frac{\pi}{2}}^{\frac{3\pi}{8}}(1-\cos 2x)dx$

$$= \frac{1}{2} \left(x - \frac{\sin 2x}{2} \right)_{\frac{\pi}{8}}^{\frac{3\pi}{8}}$$

$$S_{1} = \frac{1}{2} \left(\frac{\pi}{4} - 0 \right) = \frac{\pi}{8}$$

$$\Rightarrow \frac{16S_{1}}{\pi} = 2$$
12. The value of $\frac{48S_{2}}{\pi^{2}}$ is _____.
Answer (01.50)
Sol. $S_{2} = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \sin^{2} x |4x - \pi| dx$

$$= \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} 4 \sin^{2} x \left| x - \frac{\pi}{4} \right| dx$$
Let $x - \frac{\pi}{4} = t \Rightarrow dx = dt$

$$S_{2} = \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} 4 \sin^{2} \left(\frac{\pi}{4} + t \right) |t| dt$$

$$= \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} (2 + 2 \sin 2t) |t| dt$$

$$= 2 \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} |t| dt + 2 \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} |t| \sin (2t) dt$$

$$= 4 \int_{0}^{\frac{\pi}{8}} t dt + 0$$

$$S_{2} = 2t^{2} \int_{0}^{\frac{\pi}{8}} = \frac{\pi^{2}}{32}$$

$$\Rightarrow \frac{48S_{2}}{\pi^{2}} = \frac{3}{2}$$

SECTION - 3 (Maximum Marks : 12)

- This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:
- Full Marks : +3 If ONLY the correct option is chosen;
 - Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
- Negative Marks : -1 In all other cases.

Paragraph

Let $M = \{(x, y) \in R \times R : x^2 + y^2 \le r^2\}$, where r > 0. Consider the geometric progression $a_n = \frac{1}{2^{n-1}}$, n = 1, 2, 3, Let $S_0 = 0$ and, for $n \ge 1$, let S_n denote the sum of the first *n* terms of this progression. For $n \ge 1$, let C_n denote the circle with center $(S_{n-1}, 0)$ and radius a_n , and D_n denote the circle with center (S_{n-1}, S_{n-1}) and radius a_n .

13. Consider *M* with $r = \frac{1025}{513}$. Let *k* be the number of all those circles C_n that are inside *M*. Let *l* be the maximum

possible number of circles among these k circles such that no two circles intersect. Then

- (A) k + 2l = 22
- (B) 2k + l = 26
- (C) 2k + 3l = 34
- (D) 3k + 2l = 40

Answer (D)

Sol. :
$$a_n = \frac{1}{2^{n-1}}$$
 and $S_n = 2\left(1 - \frac{1}{2^n}\right)$

For circles C_n to be inside M.

$$S_{n-1} + a_n < \frac{1025}{513}$$

$$\Rightarrow S_n < \frac{1025}{513}$$

$$\Rightarrow 1 - \frac{1}{2^n} < \frac{1025}{1026} = 1 - \frac{1}{1026}$$

$$\Rightarrow 2^n < 1026$$

$$\Rightarrow n \le 10$$

 \therefore Number of circles inside be 10 = K

Clearly alternate circles do not intersect each other *i.e.*, C_1 , C_3 , C_5 , C_7 , C_9 do not intersect each other as well as C_2 , C_4 , C_6 , C_8 and C_{10} do not intersect each other hence maximum 5 set of circles do not intersect each other.

- ∴ *I* = 5
- $\therefore \quad 3K+2I=40$
- .: Option (D) is correct

14. Consider *M* with $r = \frac{(2^{199} - 1)\sqrt{2}}{2^{198}}$. The number of all those circles D_n that are inside *M* is

(B) 199

(D) 201

(A) 198

(C) 200

Answer (B)

Sol. ::
$$r = \frac{(2^{199} - 1)\sqrt{2}}{2^{198}}$$

Now, $\sqrt{2} S_{n-1} + a_n < \left(\frac{2^{199} - 1}{2^{198}}\right)\sqrt{2}$
 $2 \cdot \sqrt{2} \left(1 - \frac{1}{2^{n-1}}\right) + \frac{1}{2^{n-1}} < \left(\frac{2^{199} - 1}{2^{198}}\right)$.
: $2\sqrt{2} - \frac{\sqrt{2}}{2^{n-2}} + \frac{1}{2^{n-1}} < 2\sqrt{2} - \frac{\sqrt{2}}{2^{198}}$
 $\frac{1}{2^{n-2}} \left(\frac{1}{2} - \sqrt{2}\right) < -\frac{\sqrt{2}}{2^{198}}$
 $\frac{2\sqrt{2} - 1}{2 \cdot 2^{n-2}} > \frac{\sqrt{2}}{2^{198}}$
 $2^{n-2} < \left(2 - \frac{1}{\sqrt{2}}\right) 2^{197}$
: $n \le 199$
: Number of circles = 199

Option (B) is correct.

Paragraph

Let $\psi_1 : [0, \infty) \to \mathbb{R}, \ \psi_2 : [0, \infty) \to \mathbb{R}, \ f : [0, \infty) \to \mathbb{R} \text{ and } g : [0, \infty) \to \mathbb{R}$ be functions such that f(0) = g(0) = 0,

$$\psi_1(x) = e^{-x} + x, \ x \ge 0,$$

$$\psi_2(x) = x^2 - 2x - 2e^{-x} + 2, \ x \ge 0,$$

$$f(x) = \int_{-x}^{x} (|t| - t^2) e^{-t^2} dt, \ x > 0$$

$$g(x) = \int_{0}^{x^2} \sqrt{t} e^{-t} dt, \ x > 0.$$

and

- 15. Which of the following statements is TRUE?
 - (A) $f\left(\sqrt{\ln 3}\right) + g\left(\sqrt{\ln 3}\right) = \frac{1}{3}$
 - (B) For every x > 1, there exists an $\alpha \in (1, x)$ such that $\Psi_1(x) = 1 + \alpha x$
 - (C) For every x > 0, there exists a $\beta \in (0, x)$ such that $\Psi_2(x) = 2x (\Psi_1(\beta) 1)$
 - (D) *f* is an increasing function on the interval $\left| 0, \frac{3}{2} \right|$

Answer (C)

Sol.
$$\therefore g(x) = \int_{0}^{x^{2}} \sqrt{t} e^{-t} dt, x > 0$$

Let $t = u^{2} \Rightarrow dt = 2u du$
 $\therefore g(x) = \int_{0}^{x} u e^{-u^{2}} 2u du$
 $= 2\int_{0}^{x} t^{2} e^{-t^{2}} dt$...(i)
and $f(x) = \int_{-x}^{x} (|t| - t^{2})e^{-t^{2}} dt, x > 0$
 $\therefore f(x) = 2\int_{0}^{x} (t - t^{2})e^{-t^{2}} dt$...(ii)
From equation (i) + (ii) : $f(x) + g(x) = \int_{0}^{x} 2te^{-t^{2}} dt$
Let $t^{2} = P \Rightarrow 2t dt = dP$
 $\therefore f(x) + g(x) = \int_{0}^{x^{2}} e^{-P} dP = [-e^{-P}]_{0}^{x^{2}}$
 $\therefore f(x) + g(x) = 1 - e^{-x^{2}}$...(iii)
 $\therefore f(\sqrt{\ln 3}) + g(\sqrt{\ln 3}) = 1 - e^{-\ln 3} = 1 - \frac{1}{3} = \frac{2}{3}$
 \therefore Option (A) is incorrect.
From equation (ii) : $f'(x) = 2(x - x^{2})e^{-x^{2}} = 2x(1 - x)e^{-x^{2}}$

- \therefore f(x) is increasing in (0, 1)
- .: Option (D) is incorrect

$$:: \Psi_1(x) = e^{-x} + x$$

$$\Rightarrow \Psi'_{1}(x) = 1 - e^{-x} < 1 \text{ for } x > 1$$

Then for $\alpha \in (1, x)$, $\Psi_1(x) = 1 + \alpha x$ does not true for $\alpha > 1$.

... Option (B) is incorrect

Now
$$\psi_2(x) = x^2 - 2x - 2e^{-x} + 2$$

 $\Rightarrow \psi'_2(x) = 2x - 2 + 2e^{-x}$

$$\therefore \quad \psi_2'(x) = 2\psi_1(x) - 2$$

From LMVT

$$\frac{\psi_2(x) - \psi_2(0)}{x - 0} = \psi_2'(\beta) \text{ for } \beta \in (\infty, x)$$
$$\Rightarrow \quad \psi_2(x) = 2x(\psi_1(\beta) - 1)$$

.:. Option (C) is correct.

- 16. Which of the following statements is TRUE?
 - (A) $\Psi_1(x) \le 1$, for all x > 0

(B) $\Psi_2(x) \le 0$, for all x > 0

(C)
$$f(x) \ge 1 - e^{-x^2} - \frac{2}{3}x^3 + \frac{2}{5}x^5$$
, for all $x \in \left(0, \frac{1}{2}\right)$ (D) $g(x) \le \frac{2}{3}x^3 - \frac{2}{5}x^5 + \frac{1}{7}x^7$, for all $x \in \left(0, \frac{1}{2}\right)$

Answer (D)

- Sol. :: $\Psi_1(x) = e^{-x} + x$ and for all x > 0, $\Psi_1(x) > 1$:. (A) is not correct $\Psi_1(x) = x^2 + 2 - 2 (e^{-x} + x) > 0$ for x > 0:. (B) is not correct Now, $\sqrt{t} e^{-t} = \sqrt{t} \left(1 - \frac{t}{1!} + \frac{t^2}{2!} - \frac{t^3}{3!} + \dots \infty \right)$ and $\sqrt{t} e^{-t} \le t^{\frac{1}{2}} - t^{\frac{3}{2}} + \frac{1}{2}t^{\frac{5}{2}}$:. $\int_0^{x^2} \sqrt{t} e^{-t} dt \le \int_0^{x^2} \left(t^{\frac{1}{2}} - t^{\frac{3}{2}} + \frac{1}{2}t^{\frac{5}{2}} \right) dt$ $= \frac{2}{3}x^3 - \frac{2}{3}x^5 + \frac{1}{7} + \frac{1}{7}x^7$
 - ... Option (D) is correct

and
$$f(x) = \int_{-x}^{x} (|t| - t^2) e^{-t^2} dt$$

$$= 2 \int_{0}^{x} (t - t^2) e^{-t^2} dt$$

$$= \int_{0}^{x} 2t e^{-t^2} dt - 2 \int_{0}^{x} t^2 e^{-t^2} dt$$

$$= 1 - e^{-x^2} - 2 \int_{0}^{x} t^2 e^{-t^2} dt$$

$$\therefore \quad f(x) \le 1 - e^{-x^2} - 2 \int_{0}^{x} t^2 (1 - t^2) dt$$

$$= 1 - e^{-x^2} - 2 \frac{x^3}{3} + \frac{2}{5} x^5 \text{ for all } x \left(0, \frac{1}{2}\right)$$

$$\therefore \quad \text{Option (C) is incorrect.}$$

SECTION - 4 (Maximum Marks : 12)

- This section contains THREE (03) questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	:	+4	If ONLY the correct integer is entered

Zero Marks : 0 In all other cases.

17. A number is chosen at random from the set {1, 2, 3....., 2000}. Let *p* be the probability that the number is a multiple of 3 or a multiple of 7. Then the value of 500*p* is _____.

Answer (214)

Sol. *E* = *a* number which is multiple of 3 or multiple of 7

$$n(E) = (3, 6, 9, \dots, 1998) + (7, 14, 21, \dots, 1995) - (21, 42, 63, \dots, 1995)$$

- n(E) = 666 + 285 95
- n(E) = 856
- n(E) = 2000
- $P(E) = \frac{856}{2000}$

$$P(E) \times 500 = \frac{856}{4} = 214$$

18. Let *E* be the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. For any three distinct points *P*, *Q* and *Q'* on *E*, let M (*P*, *Q*) be the mid-point

of the line segment joining P and Q, and M(P, Q') be the mid-point of the line segment joining P and Q'. Then the maximum possible value of the distance between M(P, Q) and M(P, Q'), as P, Q and Q' vary on E, is _____.

Sol. Let
$$P(\alpha)$$
, $Q(\theta)$, $Q'(\theta')$

$$M = \frac{1}{2} (4\cos\alpha + 4\cos\theta), \ \frac{1}{2} (3\sin\alpha + 3\sin\theta)$$

$$M' = \frac{1}{2} (4\cos\alpha + 4\cos\theta'), \ \frac{1}{2} (3\sin\alpha + 3\sin\theta')$$

$$MM' = \frac{1}{2} \sqrt{(4\cos\theta - 4\cos\theta')^2 + (3\sin\theta - 3\sin\theta')^2}$$

$$MM' = \frac{1}{2} \text{ distance between } Q \text{ and } Q'$$

$$MM' \text{ is not depending on } P$$
Maximum of QQ' is possible when QQ' = major axis
 $QQ' = 2(4) = 8$

$$MM' = \frac{1}{2} \cdot (QQ')$$

MM' = 4

19. For any real number x, let [x] denote the largest integer less than or equal to x. If $I = \int_{0}^{10} \left[\sqrt{\frac{10x}{x+1}} \right] dx$, then the

	value of 9/ is		_·		
Answ	ver (182.00)				
Sol.	$I = \int_{0}^{10} \left[\sqrt{\frac{10x}{x+1}} \right] c$	lx			
	$y=\frac{10x}{x+1}$,	0 ≤	<i>x</i> ≤ 10)	
	xy + y = 10x				
	$x=\frac{y}{10-y}$				
	$0 \le \frac{y}{10-y} \le 10$				
	$\frac{y}{10-y} \ge 0$	and		<u>у</u> 10 –	$\frac{1}{y}$ - 10 \leq 0
	$\frac{y}{y-10} \le 0$	and		<u>11y</u> y-	$\frac{-100}{-10} \ge 0$
	+ <u>-</u> + 0 10	and	$\frac{+}{100}$	 	+)
	y ∈ [0, 10)	and		y ∈	$-\infty, \frac{100}{11} \bigg] \cup (10, \infty)$
	$y \in \left[0, \frac{100}{11}\right]$				
	$\sqrt{y} \in \left[0, \frac{10}{\sqrt{11}}\right]$			\Rightarrow	$\left[\sqrt{y}\right] = \left\{0, 1, 2, 3\right\}$

Cose I : $0 \le \frac{10x}{x+1} < 1$

$$\frac{10x}{x+1} \ge 0 \quad \text{and} \quad \frac{10x}{x+1} - 1 < 0$$

$$\frac{+}{-1} - \frac{+}{0} \quad \text{and} \quad \frac{9x-1}{x+1} < 0$$

$$\frac{+}{-1} - \frac{+}{1} - \frac{+}{1} = 0$$

$$x \in (-\infty, -1) \cup [0, \infty) \quad \text{and} \quad x \in \left(-1, \frac{1}{9}\right)$$

$$x \in \left[0, \frac{1}{9}\right] \quad \text{then} \quad \left[\sqrt{\frac{10x}{x+1}}\right] = 0$$

Case II:
$$1 \le \frac{10x}{x+1} < 4$$

$$\frac{10x}{x+1} - 1 \ge 0 \quad \text{and} \quad \frac{10x}{x+1} - 4 < 0$$

$$\frac{9x-1}{x+1} \ge 0 \quad \text{and} \quad \frac{6x-4}{x+1} < 0$$

$$\frac{+}{-1} \quad \frac{-}{1} \quad \frac{+}{9} \quad \text{and} \quad \frac{+}{-1} \quad \frac{-}{+2} \quad \frac{+}{3}$$

$$x \in (-\infty, -1) \cup \left[\frac{1}{9}, \infty\right] \quad \text{and} \quad x \in \left(-1, \frac{2}{3}\right)$$

$$x \in \left[\frac{1}{9}, \frac{2}{3}\right] \quad , \quad \left[\sqrt{\frac{10x}{x+1}}\right] = 1$$
Case III: $4 \le \frac{10x}{2} < 9$

Case III : $4 \le \frac{10x}{x+1} < 9$

$$\frac{10x}{x+1} - 4 \ge 0 \quad \text{and} \quad \frac{10x}{x+1} < 9$$

$$\frac{6x-4}{x+1} \ge 0 \quad \text{and} \quad \frac{x-9}{x+1} < 0$$

$$\frac{+}{-1} - \frac{+}{2} \quad \text{and} \quad \frac{+}{-1} - \frac{+}{9}$$

$$x \in (-\infty, -1) \cup \left[\frac{2}{3}, \infty\right] \quad x \in (-1, -1)$$

9)

$$x \in \left[\frac{2}{3}, 9\right)$$
; $\left[\sqrt{\frac{10x}{x+1}}\right] = 2$

Case IV : $x \in [9, 10] \implies \left[\sqrt{\frac{10x}{x+1}}\right] = 3$

$$I = \int_{0}^{\frac{1}{9}} 0 \cdot dx + \int_{\frac{1}{9}}^{\frac{2}{3}} 1 \cdot dx + \int_{\frac{2}{3}}^{9} 2 \cdot dx + \int_{9}^{10} 3 \cdot dx$$
$$I = \left(\frac{2}{3} - \frac{1}{9}\right) + 2\left(9 - \frac{2}{3}\right) + 3(10 - 9)$$
$$I = \frac{5}{9} + \frac{50}{3} + 3$$
$$9I = 182$$