PART-III : MATHEMATICS

SECTION - 1 (Maximum Marks : 24)

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	+4	If only (all) the correct option(s) is(are) chosen;
Partial Marks	+3	If all the four options are correct but ONLY three options are chosen;
Partial Marks	: +2	If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks	: +1	If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks	: 0	If unanswered;
Negative Marks	: - 2	In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get " 2 marks.

1. Let $S_{1}=\{(i, j, k): i, j, k \in\{1,2, \ldots, 10\}\}$,

$$
\begin{aligned}
& S_{2}=\{(i, j): 1 \leq i<j+2 \leq 10, i, j \in\{1,2, \ldots, 10\}\}, \\
& S_{3}=\{(i, j, k, l): 1 \leq i<j<k<l, i, j, k, l \in\{1,2, \ldots, 10\}\},
\end{aligned}
$$

and

$$
S_{4}=\{(i, j, k, I): i, j, k \text { and } / \text { are distinct elements in }\{1,2, \ldots, 10\}\} .
$$

If the total number of elements in the set S_{r} is $n_{r} r=1,2,3,4$, then which of the following statements is (are) TRUE?
(A) $n_{1}=1000$
(B) $n_{2}=44$
(C) $n_{3}=220$
(D) $\frac{n_{4}}{12}=420$

Answer (A,B,D)
Sol. Number of elements in $S_{1}=10 \times 10 \times 10=1000$
Number of elements in $S_{2}=9+8+7+6+5+4+3+2=44$
Number of elements in $S_{3}={ }^{10} C_{4}=210$
Number of elements in $S_{4}={ }^{10} P_{4}=210 \times 4!=5040$
2. Consider a triangle $P Q R$ having sides of lengths p, q and r opposite to the angles P, Q and R, respectively. Then which of the following statements is (are) TRUE ?
(A) $\cos P \geq 1-\frac{p^{2}}{2 q r}$
(B) $\cos R \geq\left(\frac{q-r}{p+q}\right) \cos P+\left(\frac{p-r}{p+q}\right) \cos Q$
(C) $\frac{q+r}{p}<2 \frac{\sqrt{\sin Q \sin R}}{\sin P}$
(D) If $p<q$ and $p<r$, then $\cos Q>\frac{p}{r}$ and $\cos R>\frac{p}{q}$

Answer (A,B)
Sol.

$\cos P=\frac{q^{2}+r^{2}-P^{2}}{2 q r} \quad$ and $\quad \frac{q^{2}+r^{2}}{2} \geq \sqrt{q^{2} \cdot r^{2}} \quad(\mathrm{AM} \geq \mathrm{GM})$
$\Rightarrow \quad q^{2}+r^{2} \geq 2 q r$
So, $\cos P \geq \frac{2 q r-p^{2}}{2 q r}$

$$
\begin{equation*}
\cos P \geq 1-\frac{p^{2}}{2 q r} \tag{A}
\end{equation*}
$$

(B) $\frac{(q-r) \cos P+(p-r) \cos Q}{p+q}=\frac{(q \cos P+p \cos Q)-r(\cos P+\cos Q)}{p+q}$

$$
=\frac{r(1-\cos P-\cos Q)}{p+q}=\frac{r(q-p \cos R)-(p-q \cos R)}{p+q}=\frac{(r-p-q)+(p+q) \cos R}{p+q}
$$

$$
=\cos R+\frac{r-q-p}{p+q} \leq \cos R(\because r<p+q)
$$

(C) $\frac{q+r}{p}=\frac{\sin Q+\sin R}{\sin P} \geq \frac{2 \sqrt{\sin Q \cdot \sin R}}{\sin P}$
(D) If $p<q$ and $q<r$

So, p is the smallest side, therefore one of Q or R can be obtuse
So, one of $\cos Q$ or $\cos R$ can be negative
Therefore $\cos Q>\frac{p}{r}$ and $\cos R>\frac{p}{q}$ cannot hold always.
3. Let $f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ be a continuous function such that $f(0)=1$ and $\int_{0}^{\frac{\pi}{3}} f(t) d t=0$

Then which of the following statements is (are) TRUE?
(A) The equation $f(x)-3 \cos 3 x=0$ has at least one solution in $\left(0, \frac{\pi}{3}\right)$
(B) The equation $f(x)-3 \sin 3 x=-\frac{6}{\pi}$ has at least one solution in $\left(0, \frac{\pi}{3}\right)$
(C) $\lim _{x \rightarrow 0} \frac{x \int_{0}^{x} f(t) d t}{1-e^{x^{2}}}=-1$
(D) $\lim _{x \rightarrow 0} \frac{\sin x \int_{0}^{x} f(t) d t}{x^{2}}=-1$

Answer (A,B,C)
Sol. $f(0)=1, \int_{0}^{\frac{\pi}{3}} f(t) d t=0$
(A) Consider a function $g(x)=\int_{0}^{x} f(t) d t-\sin 3 x$
$g(x)$ is continuous and differentiable function
and $g(0)=0$

$$
g\left(\frac{\pi}{3}\right)=0
$$

By Rolle's theorem $g^{\prime}(x)=0$ has at least one solution in $\left(0, \frac{\pi}{3}\right)$

$$
f(x)-3 \cos 3 x=0 \text { for some } x \in\left(0, \frac{\pi}{3}\right)
$$

(B) Consider a function
$h(x)=\int_{0}^{x} f(t) d t+\cos 3 x+\frac{6}{\pi} x$
$h(x)$ is continuous and differentiable function
and $h(0)=1$

$$
h\left(\frac{\pi}{3}\right)=1
$$

By Rolle's theorem $h^{\prime}(x)=0$ for at least one $x \in\left(0, \frac{\pi}{3}\right)$

$$
f(x)-3 \sin 3 x+\frac{6}{\pi}=0 \text { for some } x \in\left(0, \frac{\pi}{3}\right)
$$

(C) $\lim _{x \rightarrow 0} \frac{x \int_{0}^{x} f(t) d t}{1-e^{x^{2}}} \quad,\left(\frac{0}{0}\right.$ form $)$

By L' Hopital rule

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x f(x)+\int_{0}^{x} f(t) d t}{-2 x e^{x^{2}}},\left(\frac{0}{0} \text { form }\right) \\
& =\lim _{x \rightarrow 0} \frac{x f^{\prime}(x)+f(x)+f(x)}{-4 x^{2} e^{x^{2}}-2 e^{x^{2}}}=\frac{0+2 f(0)}{-0-2}=-1
\end{aligned}
$$

(D) $\lim _{x \rightarrow 0} \frac{\sin x \int_{0}^{x} f(t) d t}{x^{2}},\left(\frac{0}{0}\right.$ form $)$
$=\lim _{x \rightarrow 0} \frac{\sin x \cdot f(x)+\cos x \int_{0}^{x} f(t) d t}{2 x}$
$=\lim _{x \rightarrow 0} \frac{\left(\cos x . f(x)+\sin x . f^{\prime}(x)+\cos x . f(x)-\sin x . \int_{0}^{x} f(t) d t\right)}{2}$
$=\frac{1+0+1-0}{2}$
$=1$
4. For any real numbers α and β, let $y_{\alpha, \beta}(x), x \in \mathbb{R}$, be the solution of the differential equation $\frac{d y}{d x}+\alpha y=x e^{\beta x}, y(1)=1$ Let $S=\left\{y_{\alpha, \beta}(x): \alpha, \beta \in \mathbb{R}\right\}$. Then which of the following functions belong(s) to the set S ?
(A) $f(x)=\frac{x^{2}}{2} e^{-x}+\left(e-\frac{1}{2}\right) e^{-x}$
(B) $f(x)=-\frac{x^{2}}{2} e^{-x}+\left(e+\frac{1}{2}\right) e^{-x}$
(C) $f(x)=\frac{e^{x}}{2}\left(x-\frac{1}{2}\right)+\left(e-\frac{e^{2}}{4}\right) e^{-x}$
(D) $f(x)=\frac{e^{x}}{2}\left(\frac{1}{2}-x\right)+\left(e+\frac{e^{2}}{4}\right) e^{-x}$

Answer (A, C)
Sol. $\frac{d y}{d x}+\alpha y=x e^{\beta x}$
Integrating factor (I.F.) $=e^{\int \alpha d x}=e^{\alpha x}$
So, the solution is $y \cdot e^{\alpha x}=\int x e^{\beta x} \cdot e^{\alpha x} d x$
$y e^{\alpha x}=\int x e^{(\alpha+\beta) x} d x$
If $\alpha+\beta \neq 0$

JEE (ADVANCED)-2021 (Paper-2)

$y e^{\alpha x}=x \frac{e^{(\alpha+\beta) x}}{(\alpha+\beta)}-\frac{e^{(\alpha+\beta) x}}{(\alpha+\beta)^{2}}+C$
$y=\frac{x e^{\beta x}}{(\alpha+\beta)}-\frac{e^{\beta x}}{(\alpha+\beta)^{2}}+C e^{-\alpha x}$
$y=\frac{e^{\beta x}}{(\alpha+\beta)}\left(x-\frac{1}{\alpha+\beta}\right)+C e^{-\alpha x}$
Put $\alpha=\beta=1$ in (i)
$y=\frac{e^{x}}{2}\left(x-\frac{1}{2}\right)+C e^{-x}$
$y(1)=1$
$1=\frac{e}{2} \times \frac{1}{2}+\frac{C}{e} \Rightarrow C=e-\frac{e^{2}}{4}$
So, $y=\frac{e^{x}}{2}\left(x-\frac{1}{2}\right)+\left(e-\frac{e^{2}}{4}\right) e^{-x}$
If $\alpha+\beta=0 \& \alpha=1$
$\frac{d y}{d x}+y=x e^{-x}$
I.F. $=e^{x}$
$y e^{x}=\int x d x$
$y e^{x}=\frac{x^{2}}{2}+C$
$y=\frac{x^{2}}{2} e^{-x}+C e^{-x}$
$y(1)=1$
$1=\frac{1}{2 e}+\frac{C}{e} \Rightarrow C=e-\frac{1}{2}$
$y=\frac{x^{2}}{2} e^{-x}+\left(e-\frac{1}{2}\right) e^{-x}$
5. Let O be the origin and $\overrightarrow{O A}=2 \hat{i}+2 \hat{j}+\hat{k}, \overrightarrow{O B}=\hat{i}-2 \hat{j}+2 \hat{k}$ and $\overrightarrow{O C}=\frac{1}{2}(\overrightarrow{O B}-\lambda \overrightarrow{O A})$ for some $\lambda>0$. If $|\overrightarrow{O B} \times \overrightarrow{O C}|=\frac{9}{2}$, then which of the following statements is (are) TRUE ?
(A) Projection of $\overrightarrow{O C}$ on $\overrightarrow{O A}$ is $-\frac{3}{2}$
(B) Area of the triangle $O A B$ is $\frac{9}{2}$
(C) Area of the triangle $A B C$ is $\frac{9}{2}$
(D) The acute angle between the diagonals of the parallelogram with adjacent sides $\overrightarrow{O A}$ and $\overrightarrow{O C}$ is $\frac{\pi}{3}$

Sol. $O A=2 \hat{i}+2 \hat{j}+\hat{k}$

$$
\overrightarrow{O B}=\hat{i}-2 \hat{j}+2 \hat{k}
$$

$\overrightarrow{O C}=\frac{1}{2}(\overrightarrow{O B}-\lambda \overrightarrow{O A})$
$\overrightarrow{O B} \times \overrightarrow{O C}=\overrightarrow{O B} \times \frac{1}{2}(\overrightarrow{O B}-\lambda \overrightarrow{O A})=-\frac{\lambda}{2} \overrightarrow{O B} \times \overrightarrow{O A}=\frac{\lambda}{2}(\overrightarrow{O A} \times \overrightarrow{O B})$
Now, $\overrightarrow{O A} \times \overrightarrow{O B}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & 1 \\ 1 & -2 & 2\end{array}\right|=6 \hat{i}-3 \hat{j}-6 \hat{k}$
So, $\overrightarrow{O B} \times \overrightarrow{O C}=\frac{3 \lambda}{2}(2 \hat{i}-\hat{j}-2 \hat{k})$

$$
|\overrightarrow{O B} \times \overrightarrow{O C}|=\left|\frac{9 \lambda}{2}\right|=\frac{9}{2}
$$

So, $\lambda=1 \quad(\because \lambda>0)$
$\overrightarrow{O C}=\frac{1}{2}(\overrightarrow{O B}-\overrightarrow{O A})$
$\overrightarrow{O C}=\frac{1}{2}(-\hat{i}-4 \hat{j}+\hat{k})$
(A) Projection of $\overrightarrow{O C}$ on $\overrightarrow{O A}=\frac{\overrightarrow{O C} \cdot \overrightarrow{O A}}{|\overrightarrow{O A}|}=\frac{\frac{1}{2}(-2-8+1)}{3}=-\frac{3}{2}$
(B) Area of the triangle $O A B=\frac{1}{2}|\overrightarrow{O A} \times \overrightarrow{O B}|=\frac{9}{2}$
(C) Area of the triangle $A B C$ is $=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2}| | \begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -1 & -4 & 1 \\ -\frac{5}{2} & -4 & -\frac{1}{2}\end{array}| |=\frac{1}{2}|6 \hat{i}-3 \hat{j}-6 \hat{k}|=\frac{9}{2}$
(D) Acute angle between the diagonals of the parallelogram with adjacent sides $\overrightarrow{O A}$ and $\overrightarrow{O C}=\theta$
$\frac{(\overrightarrow{O A}+\overrightarrow{O C}) \cdot(\overrightarrow{O A}-\overrightarrow{O C})}{|\overrightarrow{O A}+\overrightarrow{O C}||\overrightarrow{O A}-\overrightarrow{O C}|}=\cos \theta$
$\cos \theta=\frac{\left(\frac{3}{2} \hat{i}+\frac{3}{2} \hat{k}\right) \cdot\left(\frac{5}{2} \hat{i}+4 \hat{j}+\frac{1}{2} \hat{k}\right)}{\frac{3}{2} \sqrt{2} \times \sqrt{\frac{90}{4}}}=\frac{18}{3 \sqrt{2} \sqrt{90}}$
$\theta \neq \frac{\pi}{3}$
6. Let E denote the parabola $y^{2}=8 x$. Let $P=(-2,4)$, and let Q and Q^{\prime} be two distinct points on E such that the lines $P Q$ and $P Q^{\prime}$ are tangents to E. Let F be the focus of E. Then which of the following statements is (are) TRUE?
(A) The triangle $P F Q$ is a right-angled triangle
(B) The triangle $Q P Q^{\prime}$ is a right-angled triangle
(C) The distance between P and F is $5 \sqrt{2}$
(D) F lies on the line joining Q and Q^{\prime}

Answer (A,B,D)
Sol. $E: y^{2}=8 x$
$P:(-2,4)$

Point $P(-2,4)$ lies on directrix $(x=-2)$ of parabola $y^{2}=8 x$
So, $\angle Q P Q^{\prime}=\frac{\pi}{2}$ and chord $Q Q^{\prime}$ is a focal chord and segment $P Q$ subtends right angle at the focus.
Slope of $Q Q^{\prime}=\frac{2}{t_{1}+t_{2}}=1$
Slope of $P F=-1$
$P F=4 \sqrt{2}$

SECTION - 2 (Maximum Marks : 12)

- This section contains THREE (03) question stems.
- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +2 If ONLY the correct numerical value is entered.
Zero Marks : $0 \quad$ In all other cases.

Question Stem for Question Nos. 7 and 8

Consider the region $R=\left\{(x, y) \in \mathrm{R} \times \mathrm{R}: x \geq 0\right.$ and $\left.y^{2} \leq 4-x\right\}$. Let F be the family of all circles that are contained in R and have centers on the x-axis. Let C be the circle that has largest radius among the circles in F. Let (α, β) be a point where the circle C meets the curve $y^{2}=4-x$.
7. The radius of the circle C is \qquad .

Answer (1.50)
8. The value of α is \qquad .

Answer (2.00)
Sol. For comprehension Q7 \& Q8

Let the circle be,
$(x-a)^{2}+y^{2}=r^{2}$
Solving it with parabola
$y^{2}=4-x$ we get
$(x-a)^{2}+4-x=r^{2}$
$\Rightarrow x^{2}-x(2 a+1)+\left(a^{2}+4-r^{2}\right)=0$
$D=0$
$\Rightarrow 4 r^{2}+4 a-15=0$
Clearly $a \geq r$
So $4 r^{2}+4 r-15 \leq 0$
$\Rightarrow \quad r_{\text {max }}=\frac{3}{2}=a$
Radius of circle C is $\frac{3}{2}$
From (1) $x^{2}-4 x+4=0$
$\Rightarrow x=2=\alpha$

Question Stem for Question Nos. 9 and 10

Let $f_{1}:(0, \infty) \rightarrow R$ and $f_{2}:(0, \infty) \rightarrow R$ be defined by $f_{1}(x)=\int_{0}^{x} \prod_{j=1}^{21}(t-j)^{j} d t, x>0$
and $f_{2}(x)=98(x-1)^{50}-600(x-1)^{49}+2450, x>0$, where, for any positive integer n and real number $a_{1}, a_{2}, \ldots . a_{n}$, $\prod_{i=1}^{n} a_{i}$ denotes the product of $a_{1}, a_{2}, . . a_{n}$. Let m_{i} and n_{i}, respectively, denote the number of points of local minima and the number of points of local maxima of function $f_{i}, i=1,2$, in the interval $(0, \infty)$.

JEE (ADVANCED)-2021 (Paper-2)

Solution for Q9 and 10

$f_{1}^{\prime}(x)=\prod_{j=1}^{21}(x-j)^{j}$
$f_{1}^{\prime}(x)=(x-1)(x-2)^{2}(x-3)^{3}, \ldots,(x-20)^{20}(x-21)^{21}$
Checking the sign scheme of $f_{1}^{\prime}(x)$ at $x=1,2,3, \ldots, 21$, we get
$f_{1}(x)$ has local minima at $x=1,5,9,13,17,21$ and local maxima at $x=3,7,11,15,19$
$\Rightarrow m_{1}=6, n_{1}=5$
$f_{2}(x)=98(x-1)^{50}-600(x-1)^{49}+2450$
$f_{2}^{\prime}(x)=98 \times 50(x-1)^{49}-600 \times 49 \times(x-1)^{48}$
$=98 \times 50 \times(x-1)^{48}(x-7)$
$f_{2}(x)$ has local minimum at $x=7$ and no local maximum.
$\Rightarrow m_{2}=1, n_{2}=0$
9. The value of $2 m_{1}+3 n_{1}+m_{1} n_{1}$ is \qquad .

Answer (57.00)
Sol. $2 m_{1}+3 n_{1}+m_{1} n_{1}$
$=2 \times 6+3 \times 5+6 \times 5$
$=57$
10. The value of $6 m_{2}+4 n_{2}+8 m_{2} n_{2}$ is \qquad .

Answer (06.00)
Sol. $6 m_{2}+4 n_{2}+8 m_{2} n_{2}$

$$
=6 \times 1+4 \times 0+8 \times 1 \times 0=6
$$

Question Stem for Question Nos. 11 and 12
Let $g_{i}:\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right] \rightarrow \mathrm{R}, i=1,2$, and $f:\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right] \rightarrow \mathrm{R}$ be functions such that $g_{1}(x)=1, g_{2}(x)=|4 x-\pi|$ and $f(x)=$ $\sin ^{2} x$, for all $x \in\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right]$. Define $S_{i}=\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} f(x) \cdot g_{i}(x) d x, i=1,2$
11. The value of $\frac{16 S_{1}}{\pi}$ is \qquad .

Answer (02.00)
Sol. $S_{1}=\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} \sin ^{2} x .1 d x$

$$
=\frac{1}{2} \int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}}(1-\cos 2 x) d x
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(x-\frac{\sin 2 x}{2}\right)_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} \\
& S_{1}=\frac{1}{2}\left(\frac{\pi}{4}-0\right)=\frac{\pi}{8} \\
& \Rightarrow \frac{16 S_{1}}{\pi}=2
\end{aligned}
$$

12. The value of $\frac{48 S_{2}}{\pi^{2}}$ is \qquad -

Answer (01.50)
Sol. $S_{2}=\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} \sin ^{2} x \cdot|4 x-\pi| d x$

$$
=\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} 4 \sin ^{2} x\left|x-\frac{\pi}{4}\right| d x
$$

Let $x-\frac{\pi}{4}=t \Rightarrow d x=d t$

$$
\begin{aligned}
S_{2} & =\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} 4 \sin ^{2}\left(\frac{\pi}{4}+t\right)|t| d t \\
& =\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} 2\left(1-\cos 2\left(\frac{\pi}{4}+t\right)\right)|t| d t \\
& =\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}}(2+2 \sin 2 t)|t| d t \\
& =2 \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}}|t| d t+2 \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}}|t| \sin (2 t) d t \\
& =4 \int_{0}^{\frac{\pi}{8}} t d t+0 \\
S_{2} & \left.=2 t^{2}\right]_{0}^{\frac{\pi}{8}}=\frac{\pi^{2}}{32} \\
\Rightarrow & \frac{48 S_{2}}{\pi^{2}}=\frac{3}{2}
\end{aligned}
$$

SECTION - 3 (Maximum Marks : 12)

- This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : $-1 \quad$ In all other cases.

Paragraph

Let $M=\left\{(x, y) \in R \times R: x^{2}+y^{2} \leq r^{2}\right\}$, where $r>0$. Consider the geometric progression $a_{n}=\frac{1}{2^{n-1}}, n=1$, $2,3, \ldots$. Let $S_{0}=0$ and, for $n \geq 1$, let S_{n} denote the sum of the first n terms of this progression. For $n \geq 1$, let C_{n} denote the circle with center $\left(S_{n-1}, 0\right)$ and radius a_{n}, and D_{n} denote the circle with center $\left(S_{n-1}, S_{n-1}\right)$ and radius a_{n}.
13. Consider M with $r=\frac{1025}{513}$. Let k be the number of all those circles C_{n} that are inside M. Let $/$ be the maximum possible number of circles among these k circles such that no two circles intersect. Then
(A) $k+2 l=22$
(B) $2 k+1=26$
(C) $2 k+3 l=34$
(D) $3 k+2 l=40$

Answer (D)
Sol. $\because \quad a_{n}=\frac{1}{2^{n-1}} \quad$ and $\quad S_{n}=2\left(1-\frac{1}{2^{n}}\right)$
For circles C_{n} to be inside M.

$$
\begin{aligned}
& S_{n-1}+a_{n}<\frac{1025}{513} \\
& \Rightarrow \quad S_{n}<\frac{1025}{513} \\
& \Rightarrow \quad 1-\frac{1}{2^{n}}<\frac{1025}{1026}=1-\frac{1}{1026} \\
& \Rightarrow \quad 2^{n}<1026 \\
& \Rightarrow \quad n \leq 10
\end{aligned}
$$

$\therefore \quad$ Number of circles inside be $10=K$
Clearly alternate circles do not intersect each other i.e., $C_{1}, C_{3}, C_{5}, C_{7}, C_{9}$ do not intersect each other as well as $C_{2}, C_{4}, C_{6}, C_{8}$ and C_{10} do not intersect each other hence maximum 5 set of circles do not intersect each other.
$\therefore \quad I=5$
$\therefore \quad 3 K+2 l=40$
\therefore Option (D) is correct
14. Consider M with $r=\frac{\left(2^{199}-1\right) \sqrt{2}}{2^{198}}$. The number of all those circles D_{n} that are inside M is
(A) 198
(B) 199
(C) 200
(D) 201

Answer (B)
Sol. $\because \quad r=\frac{\left(2^{199}-1\right) \sqrt{2}}{2^{198}}$
Now, $\sqrt{2} S_{n-1}+a_{n}<\left(\frac{2^{199}-1}{2^{198}}\right) \sqrt{2}$
$2 \cdot \sqrt{2}\left(1-\frac{1}{2^{n-1}}\right)+\frac{1}{2^{n-1}}<\left(\frac{2^{199}-1}{2^{198}}\right)$.
$\therefore \quad 2 \sqrt{2}-\frac{\sqrt{2}}{2^{n-2}}+\frac{1}{2^{n-1}}<2 \sqrt{2}-\frac{\sqrt{2}}{2^{198}}$
$\frac{1}{2^{n-2}}\left(\frac{1}{2}-\sqrt{2}\right)<-\frac{\sqrt{2}}{2^{198}}$
$\frac{2 \sqrt{2}-1}{2 \cdot 2^{n-2}}>\frac{\sqrt{2}}{2^{198}}$

$$
2^{n-2}<\left(2-\frac{1}{\sqrt{2}}\right) 2^{197}
$$

$\therefore \quad n \leq 199$
$\therefore \quad$ Number of circles $=199$
Option (B) is correct.

Paragraph

Let $\psi_{1}:[0, \infty) \rightarrow \mathbb{R}, \psi_{2}:[0, \infty) \rightarrow \mathbb{R}, f:[0, \infty) \rightarrow \mathbb{R}$ and $g:[0, \infty) \rightarrow \mathbb{R}$ be functions such that $f(0)=g(0)=0$,

$$
\begin{aligned}
& \psi_{1}(x)=e^{-x}+x, x \geq 0 \\
& \psi_{2}(x)=x^{2}-2 x-2 e^{-x}+2, x \geq 0, \\
& f(x)=\int_{-x}^{x}\left(|t|-t^{2}\right) e^{-t^{2}} d t, x>0
\end{aligned}
$$

and $\quad g(x)=\int_{0}^{x^{2}} \sqrt{t} e^{-t} d t, x>0$.
15. Which of the following statements is TRUE?
(A) $f(\sqrt{\ln 3})+g(\sqrt{\ln 3})=\frac{1}{3}$
(B) For every $x>1$, there exists an $\alpha \in(1, x)$ such that $\Psi_{1}(x)=1+\alpha x$
(C) For every $x>0$, there exists a $\beta \in(0, x)$ such that $\Psi_{2}(x)=2 x\left(\Psi_{1}(\beta)-1\right)$
(D) f is an increasing function on the interval $\left[0, \frac{3}{2}\right]$

Answer (C)

Sol. $\because g(x)=\int_{0}^{x^{2}} \sqrt{t} e^{-t} d t, x>0$
Let $t=u^{2} \Rightarrow d t=2 u d u$

$$
\begin{align*}
\therefore \quad g(x) & =\int_{0}^{x} u e^{-u^{2}} \cdot 2 u d u \\
& =2 \int_{0}^{x} t^{2} e^{-t^{2}} d t \tag{i}
\end{align*}
$$

and $f(x)=\int_{-x}^{x}\left(|t|-t^{2}\right) e^{-t^{2}} d t, x>0$
$\therefore \quad f(x)=2 \int_{0}^{x}\left(t-t^{2}\right) e^{-t^{2}} d t$
From equation (i) + (ii) : $f(x)+g(x)=\int_{0}^{x} 2 t e^{-t^{2}} d t$

$$
\text { Let } t^{2}=P \quad \Rightarrow \quad 2 t d t=d P
$$

$\therefore f(x)+g(x)=\int_{0}^{x^{2}} e^{-P} d P=\left[-e^{-P}\right]_{0}^{x^{2}}$
$\therefore f(x)+g(x)=1-e^{-x^{2}}$
$\therefore \quad f(\sqrt{\ln 3})+g(\sqrt{\ln 3})=1-e^{-\ln 3}=1-\frac{1}{3}=\frac{2}{3}$
\therefore Option (A) is incorrect.
From equation (ii) : $f^{\prime}(x)=2\left(x-x^{2}\right) e^{-x^{2}}=2 x(1-x) e^{-x^{2}}$
$\because f(x)$ is increasing in $(0,1)$
\therefore Option (D) is incorrect
$\because \quad \Psi_{1}(x)=e^{-x}+x$
$\Rightarrow \quad \Psi_{1}^{\prime}(x)=1-e^{-x}<1$ for $\mathrm{x}>1$
Then for $\alpha \in(1, x), \Psi_{1}(x)=1+\alpha x$ does not true for $\alpha>1$.
$\therefore \quad$ Option (B) is incorrect
Now $\psi_{2}(x)=x^{2}-2 x-2 e^{-x}+2$
$\Rightarrow \quad \psi_{2}^{\prime}(x)=2 x-2+2 e^{-x}$
$\therefore \quad \psi_{2}^{\prime}(x)=2 \psi_{1}(x)-2$
From LMVT

$$
\begin{aligned}
& \frac{\psi_{2}(x)-\psi_{2}(0)}{x-0}=\psi_{2}^{\prime}(\beta) \text { for } \beta \in(\infty, x) \\
& \Rightarrow \quad \psi_{2}(x)=2 x\left(\psi_{1}(\beta)-1\right)
\end{aligned}
$$

\therefore Option (C) is correct.
16. Which of the following statements is TRUE?
(A) $\Psi_{1}(x) \leq 1$, for all $x>0$
(B) $\Psi_{2}(x) \leq 0$, for all $x>0$
(C) $f(x) \geq 1-e^{-x^{2}}-\frac{2}{3} x^{3}+\frac{2}{5} x^{5}$, for all $x \in\left(0, \frac{1}{2}\right)$
(D) $g(x) \leq \frac{2}{3} x^{3}-\frac{2}{5} x^{5}+\frac{1}{7} x^{7}$, for all $x \in\left(0, \frac{1}{2}\right)$

Answer (D)
Sol. $\because \quad \Psi_{1}(x)=e^{-x}+x$
and for all $\mathrm{x}>0, \Psi_{1}(\mathrm{x})>1$
$\therefore \quad(A)$ is not correct
$\Psi_{1}(x)=x^{2}+2-2\left(e^{-x}+x\right)>0$ for $x>0$
$\therefore \quad(B)$ is not correct
Now, $\sqrt{t} \mathrm{e}^{-t}=\sqrt{t}\left(1-\frac{t}{1!}+\frac{t^{2}}{2!}-\frac{t^{3}}{3!}+\ldots \ldots \ldots . . . \infty\right)$
and $\sqrt{t} \mathrm{e}^{-t} \leq t^{\frac{1}{2}}-t^{\frac{3}{2}}+\frac{1}{2} t^{\frac{5}{2}}$

$$
\begin{aligned}
\therefore \quad \int_{0}^{x^{2}} \sqrt{t} e^{-t} d t & \leq \int_{0}^{x^{2}}\left(t^{\frac{1}{2}}-t^{\frac{3}{2}}+\frac{1}{2} t^{\frac{5}{2}}\right) d t \\
& =\frac{2}{3} x^{3}-\frac{2}{3} x^{5}+\frac{1}{7}+\frac{1}{7} x^{7}
\end{aligned}
$$

$\therefore \quad$ Option (D) is correct

$$
\text { and } f(x)=\int_{-x}^{x}\left(|t|-t^{2}\right) e^{-t^{2}} d t
$$

$$
=2 \int_{0}^{x}\left(t-t^{2}\right) e^{-t^{2}} d t
$$

$$
=\int_{0}^{x} 2 t e^{-t^{2}} d t-2 \int_{0}^{x} t^{2} e^{-t^{2}} d t
$$

$$
=1-e^{-x^{2}}-2 \int_{0}^{x} t^{2} e^{-t^{2}} d t
$$

$\therefore \quad f(x) \leq 1-e^{-x^{2}}-2 \int_{0}^{x} t^{2}\left(1-t^{2}\right) d t$

$$
=1-e^{-x^{2}}-2 \frac{x^{3}}{3}+\frac{2}{5} x^{5} \text { for all } x\left(0, \frac{1}{2}\right)
$$

\therefore Option (C) is incorrect.

SECTION - 4 (Maximum Marks : 12)

- This section contains THREE (03) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;
Zero Marks : $0 \quad$ In all other cases.
17. A number is chosen at random from the set $\{1,2,3, 2000\}$. Let p be the probability that the number is a multiple of 3 or a multiple of 7 . Then the value of $500 p$ is \qquad .

Answer (214)
Sol. $E=a$ number which is multiple of 3 or multiple of 7
$n(E)=(3,6,9, \ldots \ldots . . ., 1998)+(7,14,21, \ldots \ldots, 1995)-(21,42,63$,
$n(E)=666+285-95$
$n(E)=856$
$n(E)=2000$
$P(E)=\frac{856}{2000}$
$P(E) \times 500=\frac{856}{4}=214$
18. Let E be the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. For any three distinct points P, Q and Q^{\prime} on E, let $M(P, Q)$ be the mid-point of the line segment joining P and Q, and $M\left(P, Q^{\prime}\right)$ be the mid-point of the line segment joining P and Q^{\prime}. Then the maximum possible value of the distance between $M(P, Q)$ and $M\left(P, Q^{\prime}\right)$, as P, Q and Q^{\prime} vary on E, is \qquad .
Answer (4)
Sol. Let $P(\alpha), Q(\theta), Q^{\prime}\left(\theta^{\prime}\right)$
$M=\frac{1}{2}(4 \cos \alpha+4 \cos \theta), \frac{1}{2}(3 \sin \alpha+3 \sin \theta)$
$M^{\prime}=\frac{1}{2}\left(4 \cos \alpha+4 \cos \theta^{\prime}\right), \frac{1}{2}\left(3 \sin \alpha+3 \sin \theta^{\prime}\right)$
$M M^{\prime}=\frac{1}{2} \sqrt{\left(4 \cos \theta-4 \cos \theta^{\prime}\right)^{2}+\left(3 \sin \theta-3 \sin \theta^{\prime}\right)^{2}}$
$M M^{\prime}=\frac{1}{2}$ distance between Q and Q^{\prime}
$M M^{\prime}$ is not depending on P
Maximum of $Q Q^{\prime}$ is possible when $Q Q^{\prime}=$ major axis
$Q Q^{\prime}=2(4)=8$
$M M^{\prime}=\frac{1}{2} \cdot\left(Q Q^{\prime}\right)$
$M M^{\prime}=4$
19. For any real number x, let $[x]$ denote the largest integer less than or equal to x. If $I=\int_{0}^{10}\left[\sqrt{\frac{10 x}{x+1}}\right] d x$, then the value of $9 /$ is \qquad .
Answer (182.00)
Sol. $I=\int_{0}^{10}\left[\sqrt{\frac{10 x}{x+1}}\right] d x$
$y=\frac{10 x}{x+1} \quad, \quad 0 \leq x \leq 10$
$x y+y=10 x$
$x=\frac{y}{10-y}$
$0 \leq \frac{y}{10-y} \leq 10$
$\frac{y}{10-y} \geq 0 \quad$ and $\quad \frac{y}{10-y}-10 \leq 0$
$\frac{y}{y-10} \leq 0 \quad$ and $\quad \frac{11 y-100}{y-10} \geq 0$
$\underset{0}{+\ldots}+\underset{10}{+}$ and $\xrightarrow{+\quad-\quad+}$
$y \in[0,10) \quad$ and $\quad y \in\left(-\infty, \frac{100}{11}\right] \cup(10, \infty)$
$y \in\left[0, \frac{100}{11}\right]$
$\sqrt{y} \in\left[0, \frac{10}{\sqrt{11}}\right] \quad \Rightarrow \quad[\sqrt{y}]=\{0,1,2,3\}$
Cose I: $0 \leq \frac{10 x}{x+1}<1$

$$
x \in(-\infty,-1) \cup[0, \infty) \quad \text { and } \quad x \in\left(-1, \frac{1}{9}\right)
$$

$$
x \in\left[0, \frac{1}{9}\right) \quad \text { then } \quad\left[\sqrt{\frac{10 x}{x+1}}\right]=0
$$

$$
\begin{aligned}
& \frac{10 x}{x+1} \geq 0 \quad \text { and } \quad \frac{10 x}{x+1}-1<0 \\
& \xrightarrow[-1]{+\quad} \underset{0}{+} \text { and } \frac{9 x-1}{x+1}<0 \\
& \begin{array}{c}
+_{0}-{ }_{0}^{+} \\
\hline-1 \quad \frac{1}{9}
\end{array}
\end{aligned}
$$

Case II: $1 \leq \frac{10 x}{x+1}<4$

$$
\begin{aligned}
& \frac{10 x}{x+1}-1 \geq 0 \quad \text { and } \quad \frac{10 x}{x+1}-4<0 \\
& \frac{9 x-1}{x+1} \geq 0 \quad \text { and } \quad \frac{6 x-4}{x+1}<0 \\
& \frac{+}{-1} \quad \text { and } \quad \frac{+-+}{-1}+\frac{2}{3} \\
& x \in(-\infty,-1) \cup\left[\frac{1}{9}, \infty\right) \quad \text { and } \quad x \in\left(-1, \frac{2}{3}\right) \\
& x \in\left[\frac{1}{9}, \frac{2}{3}\right) \quad, \quad\left[\sqrt{\frac{10 x}{x+1}}\right]=1
\end{aligned}
$$

Case III : $4 \leq \frac{10 x}{x+1}<9$

$$
\begin{aligned}
& \frac{10 x}{x+1}-4 \geq 0 \quad \text { and } \quad \frac{10 x}{x+1}<9 \\
& \frac{6 x-4}{x+1} \geq 0 \quad \text { and } \quad \frac{x-9}{x+1}<0 \\
& \frac{t_{0}-+}{-1} \quad \text { and } \frac{e_{0}}{-1} 0_{9}^{+} \\
& x \in(-\infty,-1) \cup\left[\frac{2}{3}, \infty\right) \quad x \in(-1,9) \\
& x \in\left[\frac{2}{3}, 9\right) \quad ; \quad\left[\sqrt{\frac{10 x}{x+1}}\right]=2
\end{aligned}
$$

Case IV : $x \in[9,10] \Rightarrow\left[\sqrt{\frac{10 x}{x+1}}\right]=3$

$$
\begin{aligned}
& I=\int_{0}^{\frac{1}{9}} 0 \cdot d x+\int_{\frac{1}{9}}^{\frac{2}{3}} 1 \cdot d x+\int_{\frac{2}{3}}^{9} 2 \cdot d x+\int_{9}^{10} 3 \cdot d x \\
& I=\left(\frac{2}{3}-\frac{1}{9}\right)+2\left(9-\frac{2}{3}\right)+3(10-9) \\
& I=\frac{5}{9}+\frac{50}{3}+3 \\
& 9 I=182
\end{aligned}
$$

