SECTION - 1

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	:	+3	If ONLY the correct option is chosen;
Zero Marks	:	0	If none of the options is chosen (i.e. the question is unanswered);
Negative Marks	:	-1	In all other cases.

- 1. Consider a triangle Δ whose two sides lie on the *x*-axis and the line x + y + 1 = 0. If the orthocentre of Δ is (1, 1), then the equation of the circle passing through the vertices of the triangle Δ is
 - (A) $x^2 + y^2 3x + y = 0$ (B) $x^2 + y^2 + x + 3y = 0$ (C) $x^2 + y^2 + 2y - 1 = 0$ (D) $x^2 + y^2 + x + y = 0$

Answer (B)

Sol. As we know mirror image of orthocentre lie on circumcircle.

Image of (1, 1) in x-axis is (1, -1)

Image of (1, 1) in x + y + 1 = 0 is (-2, -2).

- \therefore The required circle will be passing through both (1, -1) and (-2, -2).
- \therefore Only $x^2 + y^2 + x + 3y = 0$ satisfy both.
- 2. The area of the region

$$\left\{ (x, y): 0 \le x \le \frac{9}{4}, \qquad 0 \le y \le 1, \qquad x \ge 3y, \qquad x+y \ge 2 \right\}$$

is

(A)	$\frac{11}{32}$	(B)	<u>35</u> 96
(C)	<u>37</u> 96	(D)	$\frac{13}{32}$

Answer (A)

Sol. Rough sketch of required region is

... Required area is

Area of $\triangle ACD$ + Area of $\triangle ABC$

i.e.,
$$\frac{1}{4} + \frac{3}{32} = \frac{11}{32}$$
 sq. units

3. Consider three sets $E_1 = \{1, 2, 3\}$, $F_1 = \{1, 3, 4\}$ and $G_1 = \{2, 3, 4, 5\}$. Two elements are chosen at random, without replacement, from the set E_1 , and let S_1 denote the set of these chosen elements. Let $E_2 = E_1 - S_1$ and $F_2 = F_1 \cup S_1$. Now two elements are chosen at random, without replacement, from the set F_2 and let S_2 denote the set of these chosen elements.

Let $G_2 = G_1 \cup S_2$. Finally, two elements are chosen at random, without replacement from the set G_2 and let S_3 denote the set of these chosen elements.

Let $E_3 = E_2 \cup S_3$. Given that $E_1 = E_3$, let *p* be the conditional probability of the event $S_1 = \{1, 2\}$. Then the value of *p* is

Answer (A)

Sol. We will follow the tree diagram,

JEE (ADVANCED)-2021 (Paper-1)

4. Let $\theta_1, \theta_2, ..., \theta_{10}$ be positive valued angles (in radian) such that $\theta_1 + \theta_2 + ... + \theta_{10} = 2\pi$. Define the complex numbers $z_1 = e^{i\theta_1}, z_k = z_{k-1}e^{i\theta_k}$ for k = 2, 3, ..., 10, where $i = \sqrt{-1}$. Consider the statement *P* and *Q* given below:

$$P: |z_2 - z_1| + |z_3 - z_2| + \dots + |z_{10} - z_9| + |z_1 - z_{10}| \le 2\pi$$
$$Q: |z_2^2 - z_1^2| + |z_3^2 - z_2^2| + \dots + |z_{10}^2 - z_9^2| + |z_1^2 - z_{10}^2| \le 4\pi$$
Then,
(A) *P* is **TRUE** and *Q* is **FALSE**

- (B) Q is **TRUE** and P is **FALSE**
- (C) Both *P* and *Q* are **TRUE**
- (D) Both P and Q are FALSE

$$\begin{aligned} |z_{2} - z_{1}| &= \text{ length of line } AB \leq \text{ length of arc } AB \\ |z_{3} - z_{2}| &= \text{ length of line } BC \leq \text{ length of arc } BC \\ \therefore \text{ Sum of length of these 10 lines } \leq \text{ Sum of length of arcs (i.e. } 2\pi) \\ (\text{As } (\theta_{1} + \theta_{2} + ... + \theta_{10}) = 2\pi) \\ \therefore \quad |z_{2} - z_{1}| + |z_{3} - z_{2}| + ... + |z_{1} - z_{10}| \leq 2\pi \\ \text{And } |z_{k}^{2} - z_{k-1}^{2}| &= |z_{k} - z_{k-1}| |z_{k} + z_{k-1}| \\ \text{As we know } |z_{k} + z_{k-1}| \leq |z_{k}| + |z_{k-1}| \leq 2 \\ |z_{2}^{2} - z_{1}^{2}| + |z_{3}^{2} - z_{2}^{2}| + ... + |z_{1}^{2} - z_{10}^{2}| \leq 2 (|z_{2} - z_{1}| + |z_{3} - z_{2}| + ... + |z_{1} - z_{10}|) \\ &\leq 2 (2\pi) \end{aligned}$$

 \therefore Both (*P*) and (*Q*) are true.

- This section contains THREE (03) question stems.
- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numerical keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	:	+2	If ONLY the correct numerical value is entered at the designated place;
Zero Marks	:	0	In all other cases.

Question Stem for Question Nos. 5 and 6

Question Stem

Three numbers are chosen at random, one after another with replacement, from the set $S = \{1, 2, 3, ..., 100\}$. Let p_1 be the probability that the maximum of chosen numbers is at least 81 and p_2 be the probability that the minimum of chosen numbers is at most 40.

5. The value of
$$\frac{625}{4} p_1$$
 is _____

Answer (76.25)

Sol. For p_1 , we need to remove the cases when all three numbers are less than or equal to 80.

So,
$$p_1 = 1 - \left(\frac{80}{100}\right)^3 = \frac{61}{125}$$

So,
$$\frac{625}{4}p_1 = \frac{625}{4} \times \frac{61}{125} = \frac{305}{4} = 76.25$$

6. The value of
$$\frac{125}{4} p_2$$
 is _____.

Answer (24.50)

Sol. For p_2 , we need to remove the cases when all three numbers are greater than 40.

So,
$$p_2 = 1 - \left(\frac{60}{100}\right)^3 = \frac{98}{125}$$

So,
$$\frac{125}{4}p_2 = \frac{125}{4} \times \frac{98}{125} = 24.50$$

Question Stem

Let α , β and γ be real numbers such that the system of linear equations

 $x + 2y + 3z = \alpha$ $4x + 5y + 6z = \beta$ $7x + 8y + 9z = \gamma - 1$

is consistent. Let |M| represent the determinant of the matrix

 $M = \begin{bmatrix} \alpha & 2 & \gamma \\ \beta & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$

Let *P* be the plane containing all those (α , β , γ) for which the above system of linear equations is consistent, and *D* be the **square** of the distance of the point (0, 1, 0) from the plane *P*.

7. The value of |*M*| is _____.

Answer (1)

8. The value of *D* is _____.

Answer (1.50)

Sol. Solution for Q 7 and 8

 $\Delta = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 0$

Given system of equation will be consistent even if $\alpha = \beta = \gamma - 1 = 0$, i.e. equations will form homogeneous system.

So,
$$\alpha = 0$$
, $\beta = 0$, $\gamma = 1$
$$M = \begin{vmatrix} 0 & 2 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} = -1(-1) = +1$$

As given equations are consistent

 $\begin{aligned} x + 2y + 3z - \alpha &= 0 & \dots P_1 \\ 4x + 5y + 6z - \beta &= 0 & \dots P_2 \\ 7x + 8y + 9z - (\gamma - 1) &= 0 & \dots P_3 \\ \\ \text{For some scalar } \lambda \text{ and } \mu \\ \mu P_1 + \lambda P_2 &= P_3 \\ \mu(x + 2y + 3z - \alpha) + \lambda(4x + 5y + 6z - \beta) &= 7x + 8y + 9z - (\gamma - 1) \\ \\ \text{Comparing coefficients} \end{aligned}$

 μ + 4 λ = 7, 2 μ + 5 λ = 8, 3 μ + 6 λ = 9

 λ = 2 and μ = –1 satisfy all these conditions

comparing constant terms,

 $-\alpha\mu - \beta\lambda = -(\gamma - 1)$ $\alpha - 2\beta + \gamma = 1$

So equation of plane is

$$x - 2y + z = 1$$

Distance from (0, 1, 0) = $\left|\frac{-2 - 1}{\sqrt{6}}\right| = \frac{3}{\sqrt{6}}$
$$D = \left(\frac{3}{\sqrt{6}}\right)^2 = \frac{3}{2} = 1.50$$

Question Stem for Question Nos. 9 and 10

Question Stem

Consider the lines L_1 and L_2 defined by

 $L_1: x\sqrt{2} + y - 1 = 0$ and $L_2: x\sqrt{2} - y + 1 = 0$

For a fixed constant λ , let C be the locus of a point P such that the product of the distance of P from L_1 and the distance of P from L_2 is λ^2 . The line y = 2x + 1 meets C at two points R and S, where the distance between R and S is $\sqrt{270}$.

Let the perpendicular bisector of RS meet C at two distinct points R' and S'. Let D be the square of the distance between R' and S'.

The value of λ^2 is _____. 9.

Answer (9)

10

Ar

10. The value of *D* is _____.
Answer (77.14)
Sol. Solution for Q 9 and 10

$$C : \left| \frac{x\sqrt{2} + y - 1}{\sqrt{3}} \right| \left| \frac{x\sqrt{2} - y + 1}{\sqrt{3}} \right| = \lambda^{2}$$

$$\Rightarrow C : |2x^{2} - (y - 1)^{2}| = 3\lambda^{2}$$

$$C \text{ cuts } y - 1 = 2x \text{ at } R(x_{1}, y_{1}) \text{ and } S(x_{2}, y_{2})$$
So, $|2x^{2} - 4x^{2}| = 3\lambda^{2} \Rightarrow x = \pm \sqrt{\frac{3}{2}} |\lambda|$
So, $|x_{1} - x_{2}| = \sqrt{6} |\lambda| \text{ and } |y_{1} - y_{2}| = 2|x_{1} - x_{2}| = 2\sqrt{6} |\lambda|$
 $\therefore RS^{2} = (x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2} \Rightarrow 270 = 30\lambda^{2} \Rightarrow \lambda^{2} = 9$
 \therefore Slope of $RS = 2$ and mid-point of RS is $\left(\frac{x_{1} + x_{2}}{2}, \frac{y_{1} + y_{2}}{2}\right) = (0, 1)$
So, $R'S' = y - 1 = -\frac{1}{2}x$
Solving $y - 1 = -\frac{1}{2}x$ with 'C' we get $x^{2} = \frac{12}{7}\lambda^{2}$
 $\Rightarrow |x_{1} - x_{2}| = 2\sqrt{\frac{12}{7}} |\lambda| \text{ and } |y_{1} - y_{2}| = \frac{1}{2}|x_{1} - x_{2}| = \sqrt{\frac{12}{7}} |\lambda|$
Hence, $D = (R'S')^{2} = (x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2} = \frac{12}{7} \cdot 9 \times 5 \approx 77.14$

SECTION - 3

- This section contains SIX (06) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks	:	+4	If only (all) the correct option(s) is(are) chosen;
Partial Marks	:	+3	If all the four options are correct but ONLY three options are chosen;
Partial Marks	:	+2	If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks	:	+1	If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks	:	0	If unanswere;
Negative Marks	:	-2	In all other cases.

For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then choosing ONLY (A), (B) and (D) will get +4 marks;
 choosing ONLY (A) and (B) will get +2 marks;
 choosing ONLY (A) and (D) will get +2 marks;
 choosing ONLY (B) and (D) will get +2 marks;
 choosing ONLY (B) and (D) will get +2 marks;
 choosing ONLY (A) will get +1 mark;
 choosing ONLY (B) will get +1 mark;
 choosing ONLY (D) will get +1 mark;

choosing any other option(s) will get –2 marks.

11. For any 3×3 matrix *M*, let |M| denote the determinant of *M*. Let

	1	2	3		1	0	0		1	3	2]	
E =	2	3	4	, P =	0	0	1	and <i>F</i> =	8	18	13	
	8	13	18		0	1	0		2	4	3	

If Q is a nonsingular matrix of order 3 × 3, then which of the following statements is(are) TRUE?

(A)
$$F = PEP$$
 and $P^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

(B) $|EQ + PFQ^{-1}| = |EQ| + |PFQ^{-1}|$

(C)
$$|(EF)^3| > |EF|^2$$

(D) Sum of the diagonal entries of $P^{-1}EP + F$ is equal to the sum of diagonal entries of $E + P^{-1}FP$

```
Answer (A, B, D)
```

Sol. \cdots *P* is formed from *I* by exchanging second and third row or by exchanging second and third column.

0

So, PA is a matrix formed from A by changing second and third row.

Similarly *AP* is a matrix formed from *A* by changing second and third column.

Hence,
$$\operatorname{Tr}(PAP) = \operatorname{Tr}(A)$$
 ...(1)
(A) Clearly, $P.P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 1$
and $PE = \begin{bmatrix} 1 & 2 & 3 \\ 8 & 13 & 18 \\ 2 & 3 & 4 \end{bmatrix} \Rightarrow PEP = \begin{bmatrix} 1 & 3 & 2 \\ 8 & 18 & 13 \\ 2 & 4 & 3 \end{bmatrix} = F$
 $\Rightarrow PEP = F \Rightarrow PFP = E$...(2)
(B) $\because |E| = |F| = 0$
So, $|EQ + PFQ^{-1}| = |PFPQ + PFQ^{-1}| = |P| |F| |PQ + Q^{-1}| = Also, |EQ| + |PFQ^{-1}| = 0$
(C) From (2); $PFP = E$ and $|P| = -1$
So, $|F| = |E|$
Also, $|E| = 0 = |F|$
So, $|EF|^3 = 0 = |EF|^2$
(D) $\because P^2 = I \Rightarrow P^{-1} = P$
So, $\operatorname{Tr}(P^{-1}EP + F) = \operatorname{Tr}(PEP + F) = \operatorname{Tr}(2F)$
Also $\operatorname{Tr}(E + P^{-1}FP) = \operatorname{Tr}(E + PFP) = \operatorname{Tr}(2E)$
Given that $\operatorname{Tr}(E) = \operatorname{Tr}(F)$
 $\Rightarrow \operatorname{Tr}(2E) = \operatorname{Tr}(2F)$
Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

12.

$$f(x) = \frac{x^2 - 3x - 6}{x^2 + 2x + 4}$$

Then which of the following statements is (are) TRUE?

- (A) f is decreasing in the interval (-2, -1) (B) f is increasing in the interval (1, 2)
- (D) Range of *f* is $\left[-\frac{3}{2}, 2\right]$ (C) f is onto

Sol.
$$f(x) = \frac{x^2 - 3x - 6}{x^2 + 2x + 4}$$

$$\Rightarrow f'(x) = \frac{5x(x+4)}{(x^2+2x+4)^2}$$

13. Let E, F and G be three events having probabilities

$$P(E) = \frac{1}{8}, P(F) = \frac{1}{6} \text{ and } P(G) = \frac{1}{4}, \text{ and } P(E \cap F \cap G) = \frac{1}{10}$$

For any event H, if H^c denotes its complement, then which of the following statements is(are) TRUE?

(A) $P(E \cap F \cap G^c) \leq \frac{1}{40}$ (B) $P(E^c \cap F \cap G) \leq \frac{1}{15}$ (C) $P(E \cup F \cup G) \leq \frac{13}{24}$ (D) $P(E^c \cap F^c \cap G^c) \leq \frac{5}{12}$

Answer (A, B, C)

Sol. Let $P(E \cap F) = x$, $P(F \cap G) = y$ and $P(E \cap G) = z$

Clearly $x, y, z \ge \frac{1}{10}$

$$\therefore x + z \le \frac{27}{120} \implies x, z \le \frac{15}{120}$$
$$x + y \le \frac{32}{120} \implies x, y \le \frac{20}{120}$$

and $y + z \le \frac{42}{120} \Rightarrow y, z \le \frac{30}{120}$ Now $P(E \cap F \cap G^c) = x - \frac{12}{120} \le \frac{3}{120} = \frac{1}{40}$ $P(E^c \cap F \cap G) = y - \frac{12}{120} \le \frac{80}{120} = \frac{1}{15}$ $P(E \cup F \cup G) \le P(E) + P(F) + P(G) = \frac{13}{24}$ and $P(E^c \cap F^c \cap G^c) = 1 - P(E \cup F \cup G) \ge \frac{11}{24} \ge \frac{5}{12}$

- 14. For any 3 × 3 matrix *M*, let |M| denote the determinant of *M*. Let *I* be the 3 × 3 identify matrix. Let *E* and *F* be two 3 × 3 matrices such that (I EF) is invertible. If $G = (I EF)^{-1}$, then which of the following statements is (are) **TRUE**?
 - (A) |FE| = |I FE| |FGE|(B) (I - FE) (I + FGE) = I(C) EFG = GEF(D) (I - FE) (I - FGE) = I

- Sol. $\because I EF = G^{-1}$ $\Rightarrow G - GEF = I$...(1) and G - EFG = I ...(2) Clearly GEF = EFG (option C is correct) Also (I - FE)(I + FGE) = I - FE + FGE - FE + FGE = I - FE + FGE - F(G - I)E = I - FE + FGE - FGE + FE = I (option B is correct and D is incorrect) Now, (I - FE)(I - FGE) = I - FE - FGE + F(G - I)E = I - 2FE $\Rightarrow (I - FE)(-FGE) = -FE$ $\Rightarrow |I - FE||FGE| = |FE|$
- 15. For any positive integer *n*, let $S_n : (0, \infty) \to \mathbb{R}$ be defined by

$$S_n(x) = \sum_{k=1}^n \cot^{-1}\left(\frac{1+k(k+1)x^2}{x}\right)$$

where for any $x \in \mathbb{R}$, $\cot^{-1}(x) \in (0, \pi)$ and $\tan^{-1}(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then which of the following statements is (are) **TRUE**?

(A)
$$S_{10}(x) = \frac{\pi}{2} - \tan^{-1}\left(\frac{1+11x^2}{10x}\right)$$
, for all $x > 0$

(B)
$$\lim_{n \to \infty} \cot(S_n(x)) = x$$
, for all $x > 0$

- (C) The equation $S_3(x) = \frac{\pi}{4}$ has a root in $(0, \infty)$
- (D) $\tan(S_n(x)) \le \frac{1}{2}$, for all $n \ge 1$ and x > 0

Answer (A, B)

Sol.
$$S_n(x) = \sum_{k=1}^n \tan^{-1} \left(\frac{(k+1)x - kx}{1 + kx \cdot (k+1)x} \right)$$

$$= \sum_{k=1}^n \left(\tan^{-1} (k+1)x - \tan^{-1} kx \right)$$
$$= \tan^{-1} (n+1)x - \tan^{-1} x = \tan^{-1} \left(\frac{nx}{1 + (n+1)x^2} \right)$$
Now (A) $S_{10}(x) = \tan^{-1} \left(\frac{10x}{1 + 11x^2} \right) = \frac{\pi}{2} - \tan^{-1} \left(\frac{1 + 11x^2}{10x} \right)$

(B)
$$\lim_{n \to \infty} \cot(S_n(x)) = \cot\left(\tan^{-1}\left(\frac{x}{x^2}\right)\right) = x$$

(C) $S_3(x) = \frac{\pi}{4} \implies \frac{3x}{1+4x^2} = 1 \implies 4x^2 - 3x + 1 = 0$ has no real root.

(D) For
$$x = 1$$
, $\tan(S_n(x)) = \frac{n}{n+2}$ which is greater than $\frac{1}{2}$ for $n \ge 3$ so this option is incorrect

16. For any complex number w = c + id, let $\arg(w) \in (-\pi, \pi]$, where $i = \sqrt{-1}$. Let α and β be real numbers such

that for all complex numbers z = x + iy satisfying $\arg\left(\frac{z+\alpha}{z+\beta}\right) = \frac{\pi}{4}$, the ordered pair (x, y) lies on the circle

$$x^2 + y^2 + 5x - 3y + 4 = 0$$

Then which of the following statements is (are) TRUE?

(A) $\alpha = -1$ (B) $\alpha\beta = 4$ (C) $\alpha\beta = -4$ (D) $\beta = 4$

Answer (B, D)

Sol. Circle $x^2 + y^2 + 5x - 3y + 4 = 0$ cuts the real axis (x-axis) at (-4, 0), (-1, 0)

Clearly α = 1 and β = 4

SECTION - 4

- This section contains THREE (03) questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the moust and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	:	+4	If ONLY the correct integer is entered.
Zero Marks	:	0	In all other cases.

17. For $x \in \mathbb{R}$, the number of real roots of the equation

 $3x^{2} - 4|x^{2} - 1| + x - 1 = 0$ is ______. <u>Answer (4)</u> **Sol.** $3x^{2} - 4|x^{2} - 1| + x - 1 = 0$ Let $x \in [-1, 1]$ $\Rightarrow 3x^{2} - 4(-x^{2} + 1) + x - 1 = 0$ $\Rightarrow 3x^{2} + 4x^{2} - 4 + x - 1 = 0$ $\Rightarrow 7x^{2} + x - 5 = 0$ $\Rightarrow x = \frac{-1 \pm \sqrt{1 + 140}}{2}$ Both values acceptable Let $x \in (-\infty, -1) \cup (1, \infty)$ $x^{2} - 4(x^{2} - 1) + x - 1 = 0$

$$\Rightarrow x^2 - x - 3 = 0$$
$$\Rightarrow x = \frac{1 \pm \sqrt{1 + 12}}{2}$$

Again both are acceptable

Hence total number of solution = 4

18. In a triangle ABC, let $AB = \sqrt{23}$, and BC = 3 and CA = 4. Then the value of

$$\frac{\cot A + \cot C}{\cot B}$$

is ____.

Answer (2)

Sol. With standard notations

Given :
$$c = \sqrt{23}$$
, $a = 3$, $b = 4$

Now $\frac{\cot A + \cot C}{\cot B} = \frac{\frac{\cos A}{\sin A} + \frac{\cos C}{\sin C}}{\frac{\cos B}{\sin B}}$

$$=\frac{\frac{b^{2}+c^{2}-a^{2}}{2bc.\sin A}+\frac{a^{2}+b^{2}-c^{2}}{2ab\sin C}}{\frac{c^{2}+a^{2}-b^{2}}{2ac\sin B}}$$

$$=\frac{\frac{b^{2}+c^{2}-a^{2}}{4\Delta}+\frac{a^{2}+b^{2}-c^{2}}{4\Delta}}{\frac{c^{2}+a^{2}-b^{2}}{4\Delta}}=\frac{2b^{2}}{a^{2}+c^{2}-b^{2}}=2$$

19. Let \vec{u}, \vec{v} and \vec{w} be vectors in three-dimensional space, where \vec{u} and \vec{v} are unit vectors which are not perpendicular to each other and

 $\vec{u} \cdot \vec{w} = 1, \quad \vec{v} \cdot \vec{w} = 1, \quad \vec{w} \cdot \vec{w} = 4$

If the volume of the parallelopiped, whose adjacent sides are represented by the vectors \vec{u}, \vec{v} and \vec{w} , is $\sqrt{2}$, then the value of $|3\vec{u} + 5\vec{v}|$ is _____.

Answer (7)

Sol. Given $\begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix} = \sqrt{2}$

Also
$$\begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix}^2 = \begin{vmatrix} \vec{u} \cdot \vec{u} & \vec{u} \cdot \vec{v} & \vec{u} \cdot \vec{w} \\ \vec{v} \cdot \vec{u} & \vec{v} \cdot \vec{v} & \vec{v} \cdot \vec{w} \\ \vec{w} \cdot \vec{u} & \vec{w} \cdot \vec{v} & \vec{w} \cdot \vec{w} \end{vmatrix} = 2$$

Let $\vec{u} \cdot \vec{v} = k$ and substitute rest values, we get

$$\begin{vmatrix} 1 & K & 1 \\ K & 1 & 1 \\ 1 & 1 & 4 \end{vmatrix} = 2$$

$$\Rightarrow 4K^2 - 2K = 0$$

$$\Rightarrow \vec{u} \cdot \vec{v} = 0 \quad \text{or} \quad \vec{u} \cdot \vec{v} = \frac{1}{2}$$

(rejected)

$$\therefore \vec{u} \cdot \vec{v} = \frac{1}{2}$$

$$\begin{vmatrix} 3\vec{u} + 5\vec{v} \end{vmatrix}^2 = 9 + 25 + 30 \times \frac{1}{2} = 49$$

$$\Rightarrow \begin{vmatrix} 3\vec{u} + 5\vec{v} \end{vmatrix} = 7$$