PART-III : MATHEMATICS

SECTION - 1

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.

1. Consider a triangle Δ whose two sides lie on the x-axis and the line $x+y+1=0$. If the orthocentre of Δ is $(1,1)$, then the equation of the circle passing through the vertices of the triangle Δ is
(A) $x^{2}+y^{2}-3 x+y=0$
(B) $x^{2}+y^{2}+x+3 y=0$
(C) $x^{2}+y^{2}+2 y-1=0$
(D) $x^{2}+y^{2}+x+y=0$

Answer (B)
Sol. As we know mirror image of orthocentre lie on circumcircle.
Image of $(1,1)$ in x-axis is $(1,-1)$
Image of $(1,1)$ in $x+y+1=0$ is $(-2,-2)$.
\therefore The required circle will be passing through both $(1,-1)$ and $(-2,-2)$.
\therefore Only $x^{2}+y^{2}+x+3 y=0$ satisfy both.
2. The area of the region
$\left\{(x, y): 0 \leq x \leq \frac{9}{4}, \quad 0 \leq y \leq 1, \quad x \geq 3 y, \quad x+y \geq 2\right\}$
is
(A) $\frac{11}{32}$
(B) $\frac{35}{96}$
(C) $\frac{37}{96}$
(D) $\frac{13}{32}$

Answer (A)
Sol. Rough sketch of required region is

$\therefore \quad$ Required area is

Area of $\triangle A C D+$ Area of $\triangle A B C$

i.e., $\frac{1}{4}+\frac{3}{32}=\frac{11}{32}$ sq. units
3. Consider three sets $E_{1}=\{1,2,3\}, F_{1}=\{1,3,4\}$ and $G_{1}=\{2,3,4,5\}$. Two elements are chosen at random, without replacement, from the set E_{1}, and let S_{1} denote the set of these chosen elements. Let $E_{2}=E_{1}-S_{1}$ and $F_{2}=F_{1} \cup S_{1}$. Now two elements are chosen at random, without replacement, from the set F_{2} and let S_{2} dentoe the set of these chosen elements.

Let $G_{2}=G_{1} \cup S_{2}$. Finally, two elements are chosen at random, without replacement from the set G_{2} and let S_{3} denote the set of these chosen elements.

Let $E_{3}=E_{2} \cup S_{3}$. Given that $E_{1}=E_{3}$, let p be the conditional probability of the event $S_{1}=\{1,2\}$. Then the value of p is
(A) $\frac{1}{5}$
(B) $\frac{3}{5}$
(C) $\frac{1}{2}$
(D) $\frac{2}{5}$

Answer (A)
Sol. We will follow the tree diagram,

Required probability $=\frac{\frac{1}{3}\left[\frac{1}{2} \times \frac{1}{10}\right]}{\frac{1}{3} \times \frac{1}{4}}=\frac{1}{5}$

JEE (ADVANCED)-2021 (Paper-1)

4. Let $\theta_{1}, \theta_{2}, \ldots ., \theta_{10}$ be positive valued angles (in radian) such that $\theta_{1}+\theta_{2}+\ldots+\theta_{10}=2 \pi$. Define the complex numbers $z_{1}=e^{i \theta_{1}}, z_{k}=z_{k-1} e^{i \theta_{k}}$ for $k=2,3, \ldots, 10$, where $i=\sqrt{-1}$. Consider the statement P and Q given below:
$P:\left|z_{2}-z_{1}\right|+\left|z_{3}-z_{2}\right|+\ldots+\left|z_{10}-z_{9}\right|+\left|z_{1}-z_{10}\right| \leq 2 \pi$
$Q:\left|z_{2}^{2}-z_{1}^{2}\right|+\left|z_{3}^{2}-z_{2}^{2}\right|+\ldots+\left|z_{10}^{2}-z_{9}^{2}\right|+\left|z_{1}^{2}-z_{10}^{2}\right| \leq 4 \pi$
Then,
(A) P is TRUE and Q is FALSE
(B) Q is TRUE and P is FALSE
(C) Both P and Q are TRUE
(D) Both P and Q are FALSE

Answer (C)

Sol.

$\left|z_{2}-z_{1}\right|=$ length of line $A B \leq$ length of arc $A B$
$\left|z_{3}-z_{2}\right|=$ length of line $B C \leq$ length of arc $B C$
\therefore Sum of length of these 10 lines \leq Sum of length of arcs (i.e. 2π)
(As $\left.\left(\theta_{1}+\theta_{2}+\ldots+\theta_{10}\right)=2 \pi\right)$
$\therefore\left|z_{2}-z_{1}\right|+\left|z_{3}-z_{2}\right|+\ldots+\left|z_{1}-z_{10}\right| \leq 2 \pi$
And $\left|z_{k}^{2}-z_{k-1}^{2}\right|=\left|z_{k}-z_{k-1}\right|\left|z_{k}+z_{k-1}\right|$
As we know $\left|z_{k}+z_{k-1}\right| \leq\left|z_{k}\right|+\left|z_{k-1}\right| \leq 2$

$$
\left|z_{2}^{2}-z_{1}^{2}\right|+\left|z_{3}^{2}-z_{2}^{2}\right|+\ldots+\left|z_{1}^{2}-z_{10}^{2}\right| \leq 2\left(\left|z_{2}-z_{1}\right|+\left|z_{3}-z_{2}\right|+\ldots+\left|z_{1}-z_{10}\right|\right)
$$

$$
\leq 2(2 \pi)
$$

\therefore Both (P) and (Q) are true.

SECTION - 2

- This section contains THREE (03) question stems.
- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numerical keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +2 If ONLY the correct numerical value is entered at the designated place;
Zero Marks : 0 In all other cases.

Question Stem for Question Nos. 5 and 6

Question Stem

Three numbers are chosen at random, one after another with replacement, from the set $S=\{1,2,3, \ldots, 100\}$. Let p_{1} be the probability that the maximum of chosen numbers is at least 81 and p_{2} be the probability that the minimum of chosen numbers is at most 40.
5. The value of $\frac{625}{4} p_{1}$ is \qquad .

Answer (76.25)
Sol. For p_{1}, we need to remove the cases when all three numbers are less than or equal to 80 .
So, $p_{1}=1-\left(\frac{80}{100}\right)^{3}=\frac{61}{125}$

So, $\frac{625}{4} p_{1}=\frac{625}{4} \times \frac{61}{125}=\frac{305}{4}=76.25$
6. The value of $\frac{125}{4} p_{2}$ is \qquad .

Answer (24.50)
Sol. For p_{2}, we need to remove the cases when all three numbers are greater than 40 .
So, $p_{2}=1-\left(\frac{60}{100}\right)^{3}=\frac{98}{125}$

So, $\frac{125}{4} p_{2}=\frac{125}{4} \times \frac{98}{125}=24.50$

Question Stem for Question Nos. 7 and 8

Question Stem

Let α, β and γ be real numbers such that the system of linear equations
$x+2 y+3 z=\alpha$
$4 x+5 y+6 z=\beta$
$7 x+8 y+9 z=\gamma-1$
is consistent. Let $|M|$ represent the determinant of the matrix
$M=\left[\begin{array}{ccc}\alpha & 2 & \gamma \\ \beta & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$
Let P be the plane containing all those (α, β, γ) for which the above system of linear equations is consistent, and D be the square of the distance of the point $(0,1,0)$ from the plane P.
7. The value of $|M|$ is \qquad .

Answer (1)
8. The value of D is \qquad .

Answer (1.50)
Sol. Solution for Q 7 and 8
$\Delta=\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right|=0$
Given system of equation will be consistent even if $\alpha=\beta=\gamma-1=0$, i.e. equations will form homogeneous system.
So, $\alpha=0, \beta=0, \gamma=1$
$M=\left|\begin{array}{ccc}0 & 2 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1\end{array}\right|=-1(-1)=+1$
As given equations are consistent
$x+2 y+3 z-\alpha=0 \quad \ldots P_{1}$
$4 x+5 y+6 z-\beta=0 \quad \ldots P_{2}$
$7 x+8 y+9 z-(\gamma-1)=0 \quad \ldots P_{3}$
For some scalar λ and μ
$\mu P_{1}+\lambda P_{2}=P_{3}$
$\mu(x+2 y+3 z-\alpha)+\lambda(4 x+5 y+6 z-\beta)=7 x+8 y+9 z-(\gamma-1)$
Comparing coefficients
$\mu+4 \lambda=7,2 \mu+5 \lambda=8,3 \mu+6 \lambda=9$
$\lambda=2$ and $\mu=-1$ satisfy all these conditions
comparing constant terms,
$-\alpha \mu-\beta \lambda=-(\gamma-1)$
$\alpha-2 \beta+\gamma=1$

So equation of plane is
$x-2 y+z=1$
Distance from $(0,1,0)=\left|\frac{-2-1}{\sqrt{6}}\right|=\frac{3}{\sqrt{6}}$
$D=\left(\frac{3}{\sqrt{6}}\right)^{2}=\frac{3}{2}=1.50$

Question Stem for Question Nos. 9 and 10

Question Stem

Consider the lines L_{1} and L_{2} defined by
$L_{1}: x \sqrt{2}+y-1=0$ and $L_{2}: x \sqrt{2}-y+1=0$
For a fixed constant λ, let C be the locus of a point P such that the product of the distance of P from L_{1} and the distance of P from L_{2} is λ^{2}. The line $y=2 x+1$ meets C at two points R and S, where the distance between R and S is $\sqrt{270}$.

Let the perpendicular bisector of $R S$ meet C at two distinct points R^{\prime} and S^{\prime}. Let D be the square of the distance between R^{\prime} and S^{\prime}.
9. The value of λ^{2} is \qquad .

Answer (9)
10. The value of D is \qquad .

Answer (77.14)
Sol. Solution for Q 9 and 10
$C:\left|\frac{x \sqrt{2}+y-1}{\sqrt{3}}\right|\left|\frac{x \sqrt{2}-y+1}{\sqrt{3}}\right|=\lambda^{2}$
$\Rightarrow C:\left|2 x^{2}-(y-1)^{2}\right|=3 \lambda^{2}$
C cuts $y-1=2 x$ at $R\left(x_{1}, y_{1}\right)$ and $S\left(x_{2}, y_{2}\right)$
So, $\left|2 x^{2}-4 x^{2}\right|=3 \lambda^{2} \Rightarrow x= \pm \sqrt{\frac{3}{2}}|\lambda|$
So, $\left|x_{1}-x_{2}\right|=\sqrt{6}|\lambda|$ and $\left|y_{1}-y_{2}\right|=2\left|x_{1}-x_{2}\right|=2 \sqrt{6}|\lambda|$
$\because R S^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} \Rightarrow 270=30 \lambda^{2} \Rightarrow \lambda^{2}=9$
\because Slope of $R S=2$ and mid-point of $R S$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \equiv(0,1)$
So, $R^{\prime} S^{\prime} \equiv y-1=-\frac{1}{2} x$
Solving $y-1=-\frac{1}{2} x$ with ' C ' we get $x^{2}=\frac{12}{7} \lambda^{2}$
$\Rightarrow\left|x_{1}-x_{2}\right|=2 \sqrt{\frac{12}{7}}|\lambda|$ and $\left|y_{1}-y_{2}\right|=\frac{1}{2}\left|x_{1}-x_{2}\right|=\sqrt{\frac{12}{7}}|\lambda|$
Hence, $D=\left(R^{\prime} S^{\prime}\right)^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}=\frac{12}{7} .9 \times 5 \approx 77.14$

SECTION - 3

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

| Full Marks | $:$ | +4 | If only (all) the correct option(s) is(are) chosen; |
| :--- | :--- | :--- | :--- | :--- |
| Partial Marks | $:$ | +3 | If all the four options are correct but ONLY three options are chosen; |
| Partial Marks | $:$ | +2 | If three or more options are correct but ONLY two options are chosen, both of which
 are correct; |
| Partial Marks | $:$ | +1 | If two or more options are correct but ONLY one option is chosen and it is a correct
 option; |
| Zero Marks | $:$ | 0 | If unanswere; |
| Negative Marks | $:$ | -2 | In all other cases. |

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e., the question is unanswered) will get 0 marks and
choosing any other option(s) will get -2 marks.

11. For any 3×3 matrix M, let $|M|$ denote the determinant of M. Let

$$
E=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 4 \\
8 & 13 & 18
\end{array}\right], P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \text { and } F=\left[\begin{array}{ccc}
1 & 3 & 2 \\
8 & 18 & 13 \\
2 & 4 & 3
\end{array}\right]
$$

If Q is a nonsingular matrix of order 3×3, then which of the following statements is(are) TRUE?
(A) $F=P E P$ and $P^{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(B) $\left|E Q+P F Q^{-1}\right|=|E Q|+\left|P F Q^{-1}\right|$
(C) $\left|(E F)^{3}\right|>|E F|^{2}$
(D) Sum of the diagonal entries of $P^{-1} E P+F$ is equal to the sum of diagonal entries of $E+P^{-1} F P$

Answer (A, B, D)

Sol. $\because P$ is formed from $/$ by exchanging second and third row or by exchanging second and third column.
So, $P A$ is a matrix formed from A by changing second and third row.
Similarly $A P$ is a matrix formed from A by changing second and third column.
Hence, $\operatorname{Tr}(P A P)=\operatorname{Tr}(A)$
(A) Clearly, P.P $=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=1$
and $P E=\left[\begin{array}{ccc}1 & 2 & 3 \\ 8 & 13 & 18 \\ 2 & 3 & 4\end{array}\right] \Rightarrow P E P=\left[\begin{array}{ccc}1 & 3 & 2 \\ 8 & 18 & 13 \\ 2 & 4 & 3\end{array}\right]=F$
$\Rightarrow P E P=F \Rightarrow P F P=E$
(B) $\because|E|=|F|=0$

So, $\left|E Q+P F Q^{-1}\right|=\left|P F P Q+P F Q^{-1}\right|=|P||F|\left|P Q+Q^{-1}\right|=0$
Also, $|E Q|+\left|P F Q^{-1}\right|=0$
(C) From (2); $P F P=E$ and $|P|=-1$

So, $|F|=|E|$
Also, $|E|=0=|F|$
So, $|E F|^{3}=0=|E F|^{2}$
(D) $\because P^{2}=1 \Rightarrow P^{-1}=P$

So, $\operatorname{Tr}\left(P^{-1} E P+F\right)=\operatorname{Tr}(P E P+F)=\operatorname{Tr}(2 F)$
Also $\operatorname{Tr}\left(E+P^{-1} F P\right)=\operatorname{Tr}(E+P F P)=\operatorname{Tr}(2 E)$
Given that $\operatorname{Tr}(E)=\operatorname{Tr}(F)$
$\Rightarrow \operatorname{Tr}(2 E)=\operatorname{Tr}(2 F)$
12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by
$f(x)=\frac{x^{2}-3 x-6}{x^{2}+2 x+4}$
Then which of the following statements is (are) TRUE?
(A) f is decreasing in the interval $(-2,-1)$
(B) f is increasing in the interval $(1,2)$
(C) f is onto
(D) Range of f is $\left[-\frac{3}{2}, 2\right]$

Answer (A, B)
Sol. $f(x)=\frac{x^{2}-3 x-6}{x^{2}+2 x+4}$

$$
\Rightarrow f^{\prime}(x)=\frac{5 x(x+4)}{\left(x^{2}+2 x+4\right)^{2}}
$$

JEE (ADVANCED)-2021 (Paper-1)

$\Rightarrow f(x)$ has local maxima at $x=-4$ and minima at $x=0$

Range of $f(x)$ is $\left[-\frac{3}{2}, \frac{11}{6}\right]$
13. Let E, F and G be three events having probabilities
$P(E)=\frac{1}{8}, P(F)=\frac{1}{6}$ and $P(G)=\frac{1}{4}$, and $P(E \cap F \cap G)=\frac{1}{10}$.
For any event H, if H^{c} denotes its complement, then which of the following statements is(are) TRUE?
(A) $P\left(E \cap F \cap G^{c}\right) \leq \frac{1}{40}$
(B) $P\left(E^{c} \cap F \cap G\right) \leq \frac{1}{15}$
(C) $P(E \cup F \cup G) \leq \frac{13}{24}$
(D) $P\left(E^{c} \cap F^{c} \cap G^{c}\right) \leq \frac{5}{12}$
$\overline{\text { Answer (A, B, C) }}$
Sol. Let $P(E \cap F)=x, P(F \cap G)=y$ and $P(E \cap G)=z$
Clearly $x, y, z \geq \frac{1}{10}$

$\because x+z \leq \frac{27}{120} \Rightarrow x, z \leq \frac{15}{120}$
$x+y \leq \frac{32}{120} \Rightarrow x, y \leq \frac{20}{120}$
and $y+z \leq \frac{42}{120} \Rightarrow y, z \leq \frac{30}{120}$
Now $P\left(E \cap F \cap G^{c}\right)=x-\frac{12}{120} \leq \frac{3}{120}=\frac{1}{40}$
$P\left(E^{c} \cap F \cap G\right)=y-\frac{12}{120} \leq \frac{80}{120}=\frac{1}{15}$
$P(E \cup F \cup G) \leq P(E)+P(F)+P(G)=\frac{13}{24}$
and $P\left(E^{c} \cap F^{c} \cap G^{c}\right)=1-P(E \cup F \cup G) \geq \frac{11}{24} \geq \frac{5}{12}$
14. For any 3×3 matrix M, let $|M|$ denote the determinant of M. Let I be the 3×3 identify matrix. Let E and F be two 3×3 matrices such that $(I-E F)$ is invertible. If $G=(I-E F)^{-1}$, then which of the following statements is (are) TRUE?
(A) $|F E|=|I-F E||F G E|$
(B) $(I-F E)(I+F G E)=I$
(C) $E F G=G E F$
(D) $(I-F E)(I-F G E)=I$

Answer (A, B, C)
Sol. $\because I-E F=G^{-1}$
$\Rightarrow G-G E F=1$
and $G-E F G=I$
Clearly $G E F=E F G$ (option C is correct)
Also $(I-F E)(I+F G E)=I-F E+F G E-F E+F G E$

$$
=I-F E+F G E-F(G-I) E
$$

$$
=I-F E+F G E-F G E+F E
$$

$=I$ (option B is correct and D is incorrect)
Now, $(I-F E)(I-F G E)=I-F E-F G E+F(G-I) E$

$$
=I-2 F E
$$

$\Rightarrow(I-F E)(-F G E)=-F E$
$\Rightarrow|I-F E||F G E| \quad=|F E|$
15. For any positive integer n, let $S_{n}:(0, \infty) \rightarrow \mathbb{R}$ be defined by
$S_{n}(x)=\sum_{k=1}^{n} \cot ^{-1}\left(\frac{1+k(k+1) x^{2}}{x}\right)$
where for any $x \in \mathbb{R}, \cot ^{-1}(x) \in(0, \pi)$ and $\tan ^{-1}(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then which of the following statements is (are)
TRUE?
(A) $S_{10}(x)=\frac{\pi}{2}-\tan ^{-1}\left(\frac{1+11 x^{2}}{10 x}\right)$, for all $x>0$
(B) $\lim _{n \rightarrow \infty} \cot \left(S_{n}(x)\right)=x$, for all $x>0$
(C) The equation $S_{3}(x)=\frac{\pi}{4}$ has a root in $(0, \infty)$
(D) $\tan \left(S_{n}(x)\right) \leq \frac{1}{2}$, for all $n \geq 1$ and $x>0$

Sol. $\quad S_{n}(\mathrm{x})=\sum_{k=1}^{n} \tan ^{-1}\left(\frac{(k+1) x-k x}{1+k x .(k+1) x}\right)$
$=\sum_{k=1}^{n}\left(\tan ^{-1}(k+1) x-\tan ^{-1} k x\right)$
$=\tan ^{-1}(n+1) x-\tan ^{-1} x=\tan ^{-1}\left(\frac{n x}{1+(n+1) x^{2}}\right)$
$\operatorname{Now}(A) S_{10}(x)=\tan ^{-1}\left(\frac{10 x}{1+11 x^{2}}\right)=\frac{\pi}{2}-\tan ^{-1}\left(\frac{1+11 x^{2}}{10 x}\right)$
(B) $\lim _{n \rightarrow \infty} \cot \left(S_{n}(x)\right)=\cot \left(\tan ^{-1}\left(\frac{x}{x^{2}}\right)\right)=x$
(C) $S_{3}(x)=\frac{\pi}{4} \Rightarrow \frac{3 x}{1+4 x^{2}}=1 \Rightarrow 4 x^{2}-3 x+1=0$ has no real root.
(D) For $x=1, \tan \left(S_{n}(x)\right)=\frac{n}{n+2}$ which is greater than $\frac{1}{2}$ for $n \geq 3$ so this option is incorrect.
16. For any complex number $w=c+i d$, let $\arg (w) \in(-\pi, \pi]$, where $i=\sqrt{-1}$. Let α and β be real numbers such that for all complex numbers $z=x+i y$ satisfying $\arg \left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$, the ordered pair (x, y) lies on the circle $x^{2}+y^{2}+5 x-3 y+4=0$

Then which of the following statements is (are) TRUE?
(A) $\alpha=-1$
(B) $\alpha \beta=4$
(C) $\alpha \beta=-4$
(D) $\beta=4$

Answer (B, D)
Sol. Circle $x^{2}+y^{2}+5 x-3 y+4=0$ cuts the real axis $(x$-axis) at $(-4,0),(-1,0)$
Clearly $\alpha=1$ and $\beta=4$

SECTION - 4

- This section contains THREE (03) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the moust and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : $\quad+4$ If ONLY the correct integer is entered.
Zero Marks : $0 \quad$ In all other cases.
17. For $x \in \mathbb{R}$, the number of real roots of the equation
$3 x^{2}-4\left|x^{2}-1\right|+x-1=0$
is \qquad -

Answer (4)
Sol. $3 x^{2}-4\left|x^{2}-1\right|+x-1=0$
Let $x \in[-1,1]$
$\Rightarrow 3 x^{2}-4\left(-x^{2}+1\right)+x-1=0$
$\Rightarrow 3 x^{2}+4 x^{2}-4+x-1=0$
$\Rightarrow 7 x^{2}+x-5=0$
$\Rightarrow \quad x=\frac{-1 \pm \sqrt{1+140}}{2}$
Both values acceptable
Let $x \in(-\infty,-1) \cup(1, \infty)$

$$
\begin{aligned}
& x^{2}-4\left(x^{2}-1\right)+x-1=0 \\
\Rightarrow & x^{2}-x-3=0 \\
\Rightarrow & x=\frac{1 \pm \sqrt{1+12}}{2}
\end{aligned}
$$

Again both are acceptable
Hence total number of solution $=4$
18. In a triangle $A B C$, let $A B=\sqrt{23}$, and $B C=3$ and $C A=4$. Then the value of

$$
\frac{\cot A+\cot C}{\cot B}
$$

is \qquad .

Answer (2)

JEE (ADVANCED)-2021 (Paper-1)

Sol. With standard notations

$$
\begin{aligned}
& \text { Given : } c=\sqrt{23}, \quad a=3, b=4 \\
& \text { Now } \frac{\cot A+\cot C}{\cot B}=\frac{\frac{\cos A}{\sin A}+\frac{\cos C}{\sin C}}{\frac{\cos B}{\sin B}} \\
& =\frac{\frac{b^{2}+c^{2}-a^{2}}{2 b c \cdot \sin A}+\frac{a^{2}+b^{2}-c^{2}}{2 a b \sin C}}{\frac{c^{2}+a^{2}-b^{2}}{2 a c \sin B}} \\
& =\frac{\frac{b^{2}+c^{2}-a^{2}}{4 \Delta}+\frac{a^{2}+b^{2}-c^{2}}{4 \Delta}}{\frac{c^{2}+a^{2}-b^{2}}{4 \Delta}}=\frac{2 b^{2}}{a^{2}+c^{2}-b^{2}}=2
\end{aligned}
$$

19. Let \vec{u}, \vec{v} and \vec{w} be vectors in three-dimensional space, where \vec{u} and \vec{v} are unit vectors which are not perpendicular to each other and
$\vec{u} \cdot \vec{w}=1, \quad \vec{v} \cdot \vec{w}=1, \quad \vec{w} \cdot \vec{w}=4$

If the volume of the parallelopiped, whose adjacent sides are represented by the vectors \vec{u}, \vec{v} and \vec{w}, is $\sqrt{2}$, then the value of $|3 \vec{u}+5 \vec{v}|$ is \qquad .

Answer (7)
Sol. Given $\left[\begin{array}{lll}\vec{u} & \vec{v} & \vec{w}\end{array}\right]=\sqrt{2}$
Also $\left[\begin{array}{lll}\vec{u} & \vec{v} & \vec{w}\end{array}\right]^{2}=\left|\begin{array}{lll}\vec{u} \cdot \vec{u} & \vec{u} \cdot \vec{v} & \vec{u} \cdot \vec{w} \\ \vec{v} \cdot \vec{u} & \vec{v} \cdot \vec{v} & \vec{v} \cdot \vec{w} \\ \vec{w} \cdot \vec{u} & \vec{w} \cdot \vec{v} & \vec{w} \cdot \vec{w}\end{array}\right|=2$
Let $\vec{u} \cdot \vec{v}=k$ and substitute rest values, we get

$$
\left.\begin{array}{rl}
& \left|\begin{array}{ccc}
1 & K & 1 \\
K & 1 & 1 \\
1 & 1 & 4
\end{array}\right|=2 \\
\Rightarrow & 4 K^{2}-2 K=0 \\
\Rightarrow & \vec{u} \cdot \vec{v}=0 \quad \text { or } \quad \vec{u} \cdot \vec{v}=\frac{1}{2} \\
(\text { rejected) }
\end{array}\right] \begin{array}{ll}
\therefore & \vec{u} \cdot \vec{v}=\frac{1}{2} \\
& |3 \vec{u}+5 \vec{v}|^{2}=9+25+30 \times \frac{1}{2}=49 \\
\Rightarrow & |3 \vec{u}+5 \vec{v}|=7
\end{array}
$$

