PART-II : CHEMISTRY

SECTION - 1

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : $0 \quad$ If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.

1. The major product formed in the following reaction is

(A)

(B)

(C)

(D)

Answer (B)
Sol. It is a case of Birch reduction. Alkynes on reaction with alkali metal in liq. NH_{3} gives trans-alkene. But terminal alkynes do not get reduced.

2. Among the following, the conformation that corresponds to the most stable conformation of meso-butane-2,3-diol is
(A)

(B)

(C)

(D)

Answer (B)

Sol. Meso compounds have plane of symmetry. In case of butan-2, 3-diol, gauche form is the most stable due to intra-molecular H -bonding.

3. For the given close packed structure of a salt made of cation X and anion Y shown below (ions of only one face are shown for clarity), the packing fraction is approximately (packing fraction $=\frac{\text { packing efficiency }}{100}$)

(A) 0.74
(B) 0.63
(C) 0.52
(D) 0.48

Answer (B)
Sol. a = edge length of unit cell
$2 r_{y}=a$
$2\left(r_{x}+r_{y}\right)=\sqrt{2} a$
$2 \mathrm{r}_{\mathrm{x}}+\mathrm{a}=\sqrt{2} \mathrm{a}$
$2 r_{x}=a(\sqrt{2}-1)$
$r_{x}=0.207 a$
Packing fraction $=\frac{3 \times \mathrm{vol} \text {. of } \mathrm{x}+\mathrm{vol} \text {. of } \mathrm{y}}{\text { vol. of unit cell }}$
$=\frac{3 \times \frac{4}{3} \times \pi r_{x}^{3}+\frac{4}{3} \times \pi \times r_{y}^{3}}{a^{3}}$
$=\frac{4 \times \pi \times(0.207 \mathrm{a})^{3}+\frac{4}{3} \times \pi \times(0.5 \mathrm{a})^{3}}{\mathrm{a}^{3}}$
≈ 0.63
4. The calculated spin only magnetic moments of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{CuF}_{6}\right]^{3-}$ in BM , respectively, are (Atomic numbers of Cr and Cu are 24 and 29, respectively)
(A) 3.87 and 2.84
(B) 4.90 and 1.73
(C) 3.87 and 1.73
(D) 4.90 and 2.84

Answer (A)

Sol. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}=\mathrm{Cr}^{3+}$
$\mathrm{Cr}^{3+}=3 \mathrm{~d}^{3} 4 \mathrm{~s}^{0}$
It has 3 unpaired electrons
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)} \mathrm{BM}$
$=\sqrt{3(3+2)} B M$
$=3.87 \mathrm{BM}$
$\left[\mathrm{CuF}_{6}\right]^{3-}=\mathrm{Cu}^{+3}$
$C u^{+3}=3 d^{8} 4 s^{0}$
It has 2 unpaired electrons
$\mu=\sqrt{2(2+2)} B M$
$=2.84 \mathrm{BM}$

SECTION - 2

- This section contains THREE (03) question stems.
- There are TWO (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +2 If ONLY the correct numerical value is entered ate the designated place;
Zero Marks : 0 In all other cases.
Question stem for Question Nos. 5 and 6

Question Stem

For the following reaction scheme, percentage yields are given along the arrow:

$x g$ and $y g$ are mass of R and U, respectively.
(Use : Molar mass (in $\mathrm{g} \mathrm{mol}^{-1}$) of H, C and O as 1,12 and 16 , respectively)
5. The value of x is \qquad .

Answer (1.62)
6. The value of y is \qquad .

Answer (3.20)

JEE (ADVANCED)-2021 (Paper-1)

Sol. of Q. No. 5 and 6

4 g of $\mathrm{C}_{3} \mathrm{H}_{4}=0.1 \mathrm{~mol}$
From 0.1 mol of $\mathrm{P}, 0.01 \mathrm{~mol}$ of R will be produced
$\Rightarrow 1.62 \mathrm{~g}$ of R is produced
From 0.1 mol of $P, 0.032 \mathrm{~mol}$ of U is produced
$=3.2 \mathrm{~g}$ of U is produced

Question stem for Question Nos. 7 and 8

Question Stem

For the reaction, $X(s) \rightleftharpoons Y(s)+Z(g)$, the plot of $\ln \frac{p_{z}}{p^{\theta}}$ versus $\frac{10^{4}}{T}$ is given below (in solid line), where p_{z} is the pressure (in bar) of the gas Z at temperature T and $p^{\ominus}=1$ bar.

(Given, $\frac{\mathrm{d}(\ln \mathrm{K})}{\mathrm{d}\left(\frac{1}{\mathrm{~T}}\right)}=-\frac{\Delta \mathrm{H}^{\ominus}}{\mathrm{R}}$, where the equilibrium constant, $\mathrm{K}=\frac{\mathrm{p}_{\mathrm{z}}}{\mathrm{p}^{\theta}}$ and the gas constant, $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
7. The value of standard enthalpy, $\Delta \mathrm{H}^{\ominus}$ (in kJ mol-1) for the given reaction is \qquad .

Answer (166.28)
Sol. $\mathrm{X}(\mathrm{s}) \rightleftharpoons \mathrm{Y}(\mathrm{s})+\mathrm{Z}(\mathrm{g})$
Given $\mathrm{K}=\frac{\mathrm{p}_{\mathrm{z}}}{\mathrm{p}^{\ominus}}$
$\ln K=\ln A-\frac{\Delta H^{\circ}}{R T}$
$\Rightarrow \ln \frac{\mathrm{p}_{\mathrm{z}}}{\mathrm{p}^{\theta}}=\ln \mathrm{A}-\frac{\Delta \mathrm{H}}{\mathrm{RT}}$
Slope of $\ln \frac{p_{z}}{p^{\theta}}$ vs $\frac{1}{T}$ is $\frac{d\left[\ln \left(\frac{p_{z}}{p^{\theta}}\right)\right]}{d\left(\frac{1}{T}\right)}=\frac{-\Delta H^{\circ}}{R}$
From the graph, we have $\frac{-\Delta H^{\circ}}{R}=-2 \times 10^{4}$
$\Rightarrow \Delta H^{\circ}=2 \times 10^{4} \times 8.314 \mathrm{~J}$
$\Delta H^{\circ}=166.28 \mathrm{~kJ} \mathrm{~mol}^{-1}$
8. The value of $\Delta \mathrm{S}^{\ominus}$ (in $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$) for the given reaction, at 1000 K is \qquad .

Answer (141.34)
Sol. $-R T \ln K=\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$

$$
\text { Ink }=-\frac{\Delta H^{\circ}}{R T}+\frac{\Delta S^{\circ}}{R}
$$

$$
\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}}=17
$$

$$
\Delta S^{\circ}=17 R
$$

$$
=141.338 \mathrm{~J} \mathrm{~K}^{-1}
$$

Question stem for Question Nos. 9 and 10

Question Stem

The boiling point of water in a 0.1 molal silver intrate solution (soltuion A) is $x^{\circ} \mathrm{C}$. To this solution A, an equal volume of 0.1 molal aqueous barium chloride solution is added to make a new solution B. The difference in the boiling points of water in the two solutions A and B is $y \times 10^{-2}{ }^{\circ} \mathrm{C}$.
(Assume: Densities of the solutions A and B are the same as that of water and the soluble salts dissociate completely. Use: Molal elevation constant (Ebullioscopic constant), $\mathrm{K}_{\mathrm{b}}=0.5 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$; Boiling point of pure water as $100^{\circ} \mathrm{C}$.)
9. The value of x is \qquad .

Answer (100.1)
10. The value of $|y|$ is \qquad .

Answer (2.5)

JEE (ADVANCED)-2021 (Paper-1)

Sol. of Q. No. 9 and 10

Given molality of AgNO_{3} solution is 0.1 molal (solution-A)

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{ik}_{\mathrm{b}} \mathrm{~m} \\
& \mathrm{AgNO}_{3} \rightarrow \mathrm{Ag}^{+}+\mathrm{NO}_{3}^{-} \\
& \text {van't Hoff factor (i) for } \mathrm{AgNO}_{3}=2 \\
& \Delta \mathrm{~T}_{\mathrm{b}}=2 \times 0.5 \times 0.1 \\
& \left(\mathrm{~T}_{\mathrm{s}}-\mathrm{T}^{\circ}\right)=0.1 \\
& \left(\mathrm{~T}_{\mathrm{s}}\right)_{\mathrm{A}}=100.1^{\circ} \mathrm{C}, \text { so } \mathrm{x}=100.1
\end{aligned}
$$

Now solution-A of equal volume is mixed with 0.1 molal BaCl_{2} solution to get solution- $\mathrm{B} . \mathrm{AgNO}_{3}$ reacts with BaCl_{2} to form $\mathrm{AgCl}(\mathrm{s})$.
0.1 mole of AgNO_{3} present in 1000 gram solvent or 1017 gram or 1017 mL solution,
milli moles of AgNO_{3} in V ml 0.1 molal solution is nearly 0.1 V . Similarly in BaCl_{2}.

```
\(2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{BaCl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{AgCl}(\mathrm{s})+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})\)
\begin{tabular}{llll}
0.1 V & 0.1 V & 0 & 0 \\
0 & 0.05 V & 0.1 V & 0.05 V
\end{tabular}
\(\Delta \mathrm{T}_{\mathrm{b}}=\left[\frac{0.05 \mathrm{~V} \times 3}{2 \mathrm{~V}}+\frac{0.05 \mathrm{~V} \times 3}{2 \mathrm{~V}}\right] \times 0.5=0.075\)
\(\left(T_{s}\right)_{B}=100.075^{\circ} \mathrm{C}\)
\(\left(T_{S}\right)_{A}-\left(T_{S}\right)_{B}=100.1-100.075=0.025^{\circ} \mathrm{C}\)
\(=2.5 \times 10^{-2}{ }^{\circ} \mathrm{C}\)
So \(x=100.1\) and \(|y|=2.5\)
```


SECTION - 3

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) \& (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e., the question is unanswered) will get 0 marks and
choosing any other options will get -2 marks.

11. Given:

The compound(s), which on reaction with HNO_{3} will give the product having degree of rotation, $[\alpha]_{D}=-52.7^{\circ}$ is(are)
(A)

(B)

(C)

(D)

Answer (C, D)

Sol.

$\alpha=+52.7^{\circ}$
(P)

The enantiomer of (P) will have -52.7° rotation. So the reactant must be an isomer of D-glucose which can given the mirror image of (P)
(B)

JEE (ADVANCED)-2021 (Paper-1)

Enantiomer of (P)
(D)

So answer must be C and D
12. The reaction of Q with PhSNa yields an organic compound (major product) that gives positive Carius test on treatment with $\mathrm{Na}_{2} \mathrm{O}_{2}$ followed by addition of BaCl_{2}. The correct option(s) for Q is(are)
(A)

(B)

(C)

(D)

Answer (A, D)

Sol.

Answer should be (A) and (D)
Compounds given in option - B and C do not react with PhSNa .
13. The correct statement(s) related to colloids is(are)
(A) The process of precipitating colloidal sol by an electrolyte is called peptization
(B) Colloidal solution freezes at higher temperature than the true solution at the same concentration
(C) Surfactants form micelle above critical micelle concentration (CMC). CMC depends on temperature
(D) Micelles are macromolecular colloids

Answer (B, C)
Sol. Select the correct statements.
(A) The process of precipitating colloidal sol by an electrolyte is called peptization - False, (It is process of converting precipitate into colloid)
(B) Colloidal solution freezes at a higher temperature than the true solution at the same concentration - True (colligative properties)
(C) Surfactants form miscelle above critical miscelle concentration (CMC). CMC depends on temperature - True
(D) Miscelles are macromolecular colloids - False, As misceles are associated colloids.
14. An ideal gas undergoes a reversible isothermal expansion from state I to state II followed by a reversible adiabatic expansion from state II to state III. The correct plot(s) representing the changes from state I to state III is(are)
(p: pressure, V: volume, T: temperature, H: enthalpy, S: entropy)
(A)

(B)

(C)

(D)

Answer (A, B, D)
Sol. I \rightarrow II \rightarrow reversible, isothermal expansion,
$\mathrm{T} \rightarrow$ constant, $\Delta \mathrm{V} \rightarrow+\mathrm{ve}, \Delta \mathrm{S} \rightarrow+\mathrm{ve} \Delta \mathrm{H} \Rightarrow 0$
II \rightarrow III \rightarrow Reversible, adiabatic expansion
$\mathrm{Q}=0, \Delta \mathrm{~V} \rightarrow+\mathrm{ve}, \Delta \mathrm{S} \rightarrow 0$
(A)

-ve slope - isothemal < adiabatic
I \rightarrow II \rightarrow Isothermal
II \rightarrow III \rightarrow Adiabatic
(B)

$\mathrm{I} \rightarrow \mathrm{II} \rightarrow \mathrm{T}$ constant
II \rightarrow III \rightarrow adiab atic
(C)

$$
\begin{aligned}
& \mathrm{I} \rightarrow \mathrm{II} \rightarrow \Delta \mathrm{~S} \rightarrow+\mathrm{ve}, \Delta \mathrm{H} \Rightarrow 0 \\
& \mathrm{II} \rightarrow \mathrm{III} \rightarrow \Delta \mathrm{~S} \rightarrow 0, \Delta \mathrm{H} \rightarrow-\mathrm{ve}
\end{aligned}
$$

$$
\mathrm{I} \rightarrow \mathrm{II} \rightarrow \Delta \mathrm{~S} \rightarrow+\mathrm{ve}, \Delta \mathrm{~T}=0
$$

(D)

$$
\mathrm{II} \rightarrow \mathrm{III} \rightarrow \Delta \mathrm{~S} \rightarrow 0
$$

15. The correct statement(s) related to the metal extraction processes is(are)
(A) A mixture of PbS and PbO undergoes self-reduction to produce Pb and SO_{2}.
(B) In the extraction process of copper from copper pyrites, silica is added to produce copper silicate
(C) Partial oxidation of sulphide ore of copper by roasting, followed by self-reduction produces blister copper
(D) In cyanide process, zinc powder is utilized to precipitate gold from $\mathrm{Na}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$

Answer (A, C, D)
Sol. $\mathrm{PbS}+2 \mathrm{PbO} \rightarrow 3 \mathrm{~Pb}+\mathrm{SO}_{2}$
Self reduction is taking place between PbS and PbO .
In the Bessemer converter : The raw material for the Bessemer converter is matte, i.e., $\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{FeS}$ (little). Here air blasting is initially done for slag formation and SiO_{2} is added from external source.

$$
\begin{aligned}
& \mathrm{FeS}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{FeO}+\mathrm{SO}_{2} \uparrow \\
& \mathrm{SiO}_{2}+\mathrm{FeO} \rightarrow \mathrm{FeSiO}_{3} \text { (slag) }
\end{aligned}
$$

During slag formation, the characteristic green flame is observed at the mouth of the Bessemer converter which indicates the presence of iron in the form of FeO . Disappearance of this green flame indicates that the slag formation is complete. Then air blasting is stopped and slag is removed.

Again air blasting is restarted for partial roasting before self reduction, until two-thirds of $\mathrm{Cu}_{2} \mathrm{~S}$ is converted into $\mathrm{Cu}_{2} \mathrm{O}$. After this, only heating is continued for the self reduction process.

$$
\begin{aligned}
& \mathrm{Cu}_{2} \mathrm{~S}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{Cu}_{2} \mathrm{O}+\mathrm{SO}_{2} \uparrow \\
& \mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O} \rightarrow 6 \mathrm{Cu}(\mathrm{I})+\mathrm{SO}_{2} \uparrow \\
& \text { and } \mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{O}_{2} \rightarrow \mathrm{Cu}_{2} \mathrm{SO}_{4} \\
& \mathrm{Cu}_{2} \mathrm{~S}+\mathrm{Cu}_{2} \mathrm{SO}_{4} \rightarrow 4 \mathrm{Cu}+2 \mathrm{SO}_{2} \uparrow
\end{aligned}
$$

Thus the molten Cu obtained is poured into large container and allowed to cool and during cooling the dissolved SO_{2} comes up to the surface and forms blisters. It is known as blister copper.

$$
2 \mathrm{Na}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]+\mathrm{Zn} \rightarrow \mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]+2 \mathrm{Au} \downarrow
$$

16. A mixture of two salts is used to prepare a solution S , which gives the following results:

The correct option(s) for the salt mixture is(are)
(A) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
(B) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$
(C) AgNO_{3} and $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$
(D) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$

Answer (A, B)
Sol. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \xrightarrow[\text { Room temp. }]{\text { dil } \mathrm{HCl}} \underset{\text { (white ppt) }}{\mathrm{PbCl}_{2}}$

$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \xrightarrow[\text { Room temperature }]{\text { dil } \mathrm{NaOH}(\mathrm{aq})} \underset{\text { (white ppt) }}{\mathrm{Zn}(\mathrm{OH})_{2}}$
$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \xrightarrow[\text { Room temperature }]{\text { dil } \mathrm{CCl}(\mathrm{aq})} \underset{\text { (White ppt) }}{\mathrm{BiOCl}}$
$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \xrightarrow[\text { Room temperature }]{\text { dil } \mathrm{NaOH}(\mathrm{aq})} \underset{\text { (White ppt) }}{\mathrm{Bi}(\mathrm{OH})_{3}}$

$$
\begin{aligned}
& \mathrm{AgNO}_{3} \xrightarrow[\text { Room temperature }]{\text { dilute } \mathrm{NaOH}(\mathrm{aq})} \underset{\text { (Brownish black ppt) }}{\mathrm{Ag}_{2} \mathrm{O}} \\
& \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2} \xrightarrow[\text { Room temperature }]{\text { dil HCl }} \mathrm{Hg}_{\text {(soluble) }}^{2+}+2 \mathrm{Cl}^{-} \\
& \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2} \xrightarrow[\text { Room temperature }]{\text { dilute } \mathrm{NaOH}(\text { (aq) }} \underset{\text { (Yellow precipitate) }}{\mathrm{HgO}}
\end{aligned}
$$

SECTION - 4

- This section contains THREE (03) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct numerical value is entered.
Zero Marks : 0 In all other cases.
17. The maximum number of possible isomers (including stereoisomers) which may be formed on mono-bromination of 1-methylcyclohex-1-ene using Br_{2} and UV light is \qquad .

Answer (13)

Sol.

Monobromination of 1-methylcyclohexene in presence of UV light proceeds by free radical mechanism. The allyl radicals are formed which are stabilised by resonance. The secondary alkyl radicals are also formed which are stabilised by hyperconjugation. Of the seven products formed, six of them are optically active. So, 13 possible isomers are formed.
18. In the reaction given below, the total number of atoms having $s p^{2}$ hybridization in the major product P is \qquad .

Sol.

(P)

The total number of atoms having $s p^{2}$ hybridisation in the major product $(\mathrm{P})=12$
This includes 4 C -atoms, 4 N -atoms and 4 O -atoms.
19. The total number of possible isomers for $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$ is

Answer (6)
Sol. The given complex $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$ has three ionisation isomers and each of them has two geometrical isomers.

(cis)

(trans)

(cis)

(trans)

(trans)

(cis)

