FINAL JEE(Advanced) EXAMINATION - 2019

(Held On Monday 27th MAY, 2019)

PAPER-1

TEST PAPER WITH ANSWER & SOLUTION

PART-2 : CHEMISTRY

SECTION-1 : (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options. ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme : *Full Marks* : +3 If ONLY the correct option is chosen. *Zero Marks* : 0 If none of the options is chosen (i.e. the question is unanswered) *Negative Marks* : -1 In all other cases
- 1. Molar conductivity (Λ_m) of aqueous solution of sodium stearate, which behaves as a strong electrolyte, is recorded at varying concentration(c) of sodium stearate. Which one of the following plots provides the correct representation of micelle formation in the solution ?

(Critical micelle concentration (CMC) is marked with an arrow in the figures.)

Ans. (3)

2. The correct order of acid strength of the following carboxylic acids is -

Sol. I > II > III > IV

3. Calamine, malachite, magnetite and cryolite, respectively are

(1) ZnSO₄, CuCO₃, Fe₂O₃, AlF₃

(3)
$$ZnSO_4$$
, $Cu(OH)_2$, Fe_3O_4 , Na_3AlF_6

(4)
$$ZnCO_3$$
, $CuCO_3$, Fe_2O_3 , Na_3AlF_6

(3) $Cr_2(B_4O_7)_3$ (4) Cr_2O_3

(2) $ZnCO_3$, $CuCO_3$. $Cu(OH)_2$, Fe_3O_4 , Na_3AlF_6

Ans. (2)

Sol. Ore Calamine ZnCO₃ CuCO₃.Cu(OH)₂ Malachite Magnetite Fe₃O₄ Cryolite Na_3AlF_6 So correct answer is option(2)

(2) CrB

Formula

(1) $Cr(BO_{\gamma})_{\gamma}$ Ans. (1)

4.

Sol. Chromium (III) salt $\xrightarrow{\Lambda}$ Cr₂O₃

Borax $\xrightarrow{\Delta}$ $B_2O_3 + NaBO_2$

 $2Cr_2O_3 + 6B_2O_3 \longrightarrow 4 Cr(BO_2)_3$

So correct answer is option(1)

SECTION-2 : (Maximum Marks: 32)

The green colour produced in the borax bead test of a chromium(III) salt is due to -

- This section contains EIGHT (08) questions.
- Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s)
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	: +4	If only (all) the correct option(s) is (are) chosen.			
Partial Marks	: +3	If all the four options are correct but ONLY three options are chosen.			
Partial Marks	: +2	If three or more options are correct but ONLY two options are chosen and both			
		of which are correct.			
Partial Marks	: +1	If two or more options are correct but ONLY one option is chosen			
		and it is a correct option.			
Zero Marks	: 0	If none of the options is chosen (i.e. the question is unanswered).			
Negative Marks	: -1	In all other cases.			

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
 choosing ONLY (A), (B) and (D) will get +4 marks;
 choosing ONLY (A) and (B) will get +2 marks;
 choosing ONLY (A) and (D) will get +2 marks;
 choosing ONLY (B) and (D) will get +2 marks;
 choosing ONLY (B) and (D) will get +2 marks;
 choosing ONLY (A) will get +1 marks;
 choosing ONLY (B) will get +1 marks;
 choosing ONLY (D) will get +1 marks;
 choosing ONLY (D) will get +1 marks;
 choosing no option (i.e. the question is unanswered) will get 0 marks, and
 choosing any other combination of options will get -1 mark.
- Fusion of MnO₂ with KOH in presence of O₂ produces a salt W. Alkaline solution of W upon eletrolytic oxidation yields another salt X. The manganese containing ions present in W and X, respectively, are Y and Z. Correct statement(s) is (are)
 - (1) \mathbf{Y} is diamagnetic in nature while \mathbf{Z} is paramagnetic
 - (2) Both \mathbf{Y} and \mathbf{Z} are coloured and have tetrahedral shape
 - (3) In both Y and Z, π -bonding occurs between p-orbitals of oxygen and d-orbitals of manganese.
 - (4) In aqueous acidic solution, Y undergoes disproportionation reaction to give Z and MnO_2 .

Sol.
$$MnO_2 + 2KOH + \frac{1}{2}O_2 \xrightarrow{\Delta} K_2MnO_4 + H_2O$$

(W)

$$\begin{bmatrix} (W) = K_2 MnO_{4(aq)} \rightleftharpoons 2K_{(aq)}^{\oplus} + MnO_{4(aq)}^{2-} \\ (Y) \end{bmatrix}$$

$$K_2MnO_4 + H_2O \xrightarrow{\text{Electolytic}} H_2 + KOH + KMnO_4$$
(X)

 $[anion of X = MnO_4^{-}]$ (Z)

$$\begin{bmatrix} \because MnO_4^{2-} \xrightarrow{Electrolytic} MnO_4^{-} + e^{-} \\ (Y) \qquad (Z) \end{bmatrix}$$

: In acidic solution; Y undergoes disproportionation reaction

$$\begin{bmatrix} 3MnO_{4(aq)}^{2-} + 4H^{\oplus} \longrightarrow 2MnO_{4}^{-} + MnO_{2} + 2H_{2}O \end{bmatrix}$$
(Z)

- Which of the following statement(s) is (are) correct regarding the root mean square speed (U_{rms}) and average translational kinetic energy (ε_{av}) of a molecule in a gas at equilibrium ?
 (1) U_{rms} is doubled when its temperature is increased four times
 - (2) $\boldsymbol{\epsilon}_{av}$ at a given temperature does not depend on its molecular mass
 - (3) $U_{\mbox{\tiny rms}}$ is inversely proportional to the square root of its molecular mass
 - (4) ε_{av} is doubled when its temperature is increased four times

Sol. $U_{\rm rms} = \sqrt{\frac{3RT}{M}}$

$$E_{avg} = \frac{3}{2}kT$$

3. In the decay sequence :

 $\stackrel{238}{_{92}}{\rm U} \xrightarrow{-{\rm x}_1} \stackrel{234}{_{90}}{\rm Th} \xrightarrow{-{\rm x}_2} \stackrel{234}{_{91}}{\rm Pa} \xrightarrow{-{\rm x}_3} \stackrel{234}{_{234}}{\rm Z} \xrightarrow{-{\rm x}_4} \stackrel{234}{_{90}}{\rm Th}$

 x_1, x_2, x_3 and x_4 are particles/ radiation emitted by the respective isotopes. The correct option(s) is/are-

- (1) Z is an isotope of uranium
- (2) x_2 is β^-
- (3) x_1 will deflect towards negatively charged plate
- (4) x_3 is γ -ray

Sol.
$${}_{92}U^{238} \longrightarrow {}_{90}Th^{234} + {}_{2}He^{4}(or \alpha) \text{ or } x_{1}$$

 \downarrow
 ${}_{91}Pa^{234} + \beta^{-}(or_{-1}e^{\circ}) \text{ or } x_{2}$
 \downarrow
 ${}_{92}Z^{234} + \beta^{-}(or_{-1}e^{\circ}) \text{ or } x_{3}$
 \downarrow
 ${}_{90}Th^{230} + {}_{2}He^{4}(or \alpha) \text{ or } x_{4}$

U and Z are isotopes

- 4. Which of the following statement(s) is(are) true ?
 - (1) Oxidation of glucose with bromine water gives glutamic acid
 - (2) The two six-membered cyclic hemiacetal forms of D-(+)-glucose ard called anomers
 - (3) Hydrolysis of sucrose gives dextrorotatory glucose and laevorotatory fructose

(4) Monosaccharides **cannot** be hydrolysed to give polyhydroxy aldehydes and ketones **Ans.** (2,3,4)

(2) **TRUE :** Six member hemiacetal on anomeric carbon gives α -D glucose & β -D glucose.

(3) **TRUE**: $C_{12}H_{22}O_{11} + H_2O \xrightarrow{Invertase} C_6H_{12}O_6 + C_6H_{12}O_6$ Glucose Fructose (+) (-)

(4) TRUE : Monosaccharide cannot be hydrolysed to give polyhydroxy aldehydes and ketones

- 5. A tin chloride **Q** undergoes the following reactions (not balanced)
 - $\mathbf{Q} + \mathrm{Cl}^{-} \rightarrow \mathbf{X}$

$$\mathbf{Q} + \mathrm{Me}_{3}\mathrm{N} \rightarrow \mathbf{Y}$$

$$\mathbf{Q} + \operatorname{CuCl}_2 \rightarrow \mathbf{Z} + \operatorname{CuCl}$$

X is a monoanion having pyramidal geometry. Both Y and Z are neutral compounds. Choose the correct option(s).

(1) The central atoms in \mathbf{X} is sp³ hybridized

(2) The oxidation state of the central atom in \mathbf{Z} is +2

- (3) The central atom in \mathbf{Z} has one lone pair of electrons
- (4) There is a coordinate bond in \mathbf{Y}

Sol.
$$\operatorname{SnCl}_2 + \operatorname{Cl}^- \longrightarrow \operatorname{SnCl}_3^-$$

 $(\mathbf{Q}) \qquad (\mathbf{X})$
 $\operatorname{SnCl}_2 + \operatorname{Me}_3 \operatorname{N} \longrightarrow \operatorname{SnCl}_2 \operatorname{NMe}_3 \begin{bmatrix} \operatorname{Me} & \\ \operatorname{Sn} & \\ \operatorname{Cl} \end{bmatrix}$
 $\operatorname{SnCl}_2 + 2\operatorname{CuCl}_2 \longrightarrow \operatorname{SnCl}_4 + 2\operatorname{CuCl}$
 $(\mathbf{Q}) \qquad (\mathbf{Z})$

6. Choose the correct option(s) for the following set of reactions

- **7.** Each of the following options contains a set of four molecules. Identify the option(s) where all four molecules possess permanent dipole moment at room temperature.
 - (1) BeCl₂, CO₂, BCl₃, CHCl₃

(3)
$$BF_3$$
, O_3 , SF_6 , XeF_6

Ans. (2,4)

Sol. Polar molecule

CHCl₃, SO₂, C₆H₅Cl, H₂Se, BrF₅, O₃, XeF₆, NO₂, NH₃, POCl₃, CH₃Cl

So correct answer is option (2) and (4)

Non-polar molecule

$$\operatorname{BeCl}_2$$
, CO_2 , BCl_3 , SF_6

8. Choose the reaction(s) from the following options, for which the standard enthalpy of reaction is equal to the standard enthalpy of formation.

(1)
$$\frac{3}{2}O_2(g) \rightarrow O_3(g)$$

(2) $\frac{1}{8}S_8(s) + O_2(g) \rightarrow SO_2(g)$
(3) $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$
(4) $2C(g) + 3H_2(g) \rightarrow C_2H_6(g)$

Ans. (1,2)

Sol. Enthalpy of formation is defined as enthalpy change for formation of 1 mole of substance from its elements, present in their natural most stable form.

SECTION-3 : (Maximum Marks: 18)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value to **Two** decimal places.
- Answer to each question will be evaluated according to the following marking scheme: *Full Marks* :+3 If ONLY the correct numerical value is entered. *Zero Marks* : 0 In all other cases.
- 1. For the following reaction, the equilibrium constant K_c at 298 K is 1.6×10^{17} . Fe²⁺(aq) + S²⁻(aq) \rightleftharpoons FeS(s)

When equal volumes of 0.06 M Fe²⁺(aq) and 0.2 M S²⁻(aq) solutions are mixed, the equilibrium concentration of Fe²⁺(aq) is found to be $\mathbf{Y} \times 10^{-17}$ M. The value of Y is ———

Ans. (8.92 or 8.93)

Sol. $\operatorname{Fe}_{(aq.)}^{+2} + S_{(aq.)}^{-2} \rightleftharpoons \operatorname{FeS}(s)$ $0.03 \text{ M} \quad 0.1 \text{ M}$ $(0.03-x) \quad (0.1-x)$ $\approx y \quad \approx 0.07$ $K_c \gg 10^3 \Rightarrow 0.03-x \approx 0 \approx y$ $\Rightarrow x = 0.03$ $K_c = 1.6 \times 10^{17} = \frac{1}{y \times 0.07}$ $y = \frac{10^{-17}}{1.6 \times 0.07} = 8.928 \times 10^{-17} = Y \times 10^{-17}$ $\overline{y \approx 8.93}$ 2. Among B_2H_6 , $B_3N_3H_6$, N_2O , N_2O_4 , $H_2S_2O_3$ and $H_2S_2O_8$, the total number of molecules containing covalent bond between two atoms of the same kind is _____

Ans. (4.00)

Sol. $N \equiv N \rightarrow O$

So correct answer is 4

3. Consider the kinetic data given in the following table for the reaction $A + B + C \rightarrow$ Product.

Experiment No.	$[A] (mol dm^{-3})$	$[B] (mol dm^{-3})$	[C] (mol dm-3)	Rate of reaction (mol $dm^{-3} s^{-1}$)
1	0.2	0.1	0.1	$6.0 imes 10^{-5}$
2	0.2	0.2	0.1	$6.0 imes 10^{-5}$
3	0.2	0.1	0.2	1.2×10^{-4}
4	0.3	0.1	0.1	$9.0 imes 10^{-5}$

The rate of the reaction for $[A] = 0.15 \text{ mol } dm^{-3}$, $[B] = 0.25 \text{ mol } dm^{-3}$ and $[C] = 0.15 \text{ mol } dm^{-3}$ is found to be $\mathbf{Y} \times 10^{-5} \text{ mol } dm^{-3} \text{ s}^{-1}$. The value of \mathbf{Y} is ______

Ans. (6.75)

Sol. $r = K[A]^{n_1} [B]^{n_2} [C]^{n_3}$ From table $n_1 = 1$ $n_2 = 0$ $n_3 = 1$ r = K[A] [C]From Exp-1 $6 \times 10^{-5} = K \times 0.2 \times 0.1$ $K = 3 \times 10^{-3}$ $r = (3 \times 10^{-3}) \times 0.15 \times 0.15$ $= 6.75 \times 10^{-5}$ $= Y \times 10^{-5}$ Y = 6.75 4. On dissolving 0.5 g of a non-volatile non-ionic solute to 39 g of benzene, its vapor pressure decreases from 650 mm Hg to 640 mm Hg. The depression of freezing point of benzene (in K) upon addition of the solute is _____

(Given data : Molar mass and the molal freezing point depression constant of benzene are 78 g mol⁻¹ and 5.12 K kg mol⁻¹, respectively)

Ans. (1.02 or 1.03)

Sol. $\frac{P^{\circ} - P_{s}}{P^{\circ}} = \frac{n_{solute}}{n_{solute} + n_{solvent}}$ $\frac{650 - 640}{650} = \frac{n_{solute}}{n_{solute} + 0.5}$ $n_{solute} = \left(\frac{5}{640}\right)$ $Molality = \frac{5 \times 1000}{640 \times 39}$ $\Delta T_{f} = m \times K_{b}$ $= \frac{5.12 \times 5 \times 1000}{640 \times 39}$ = 1.0256 $\Delta T_{f} \approx 1.03$

Scheme 1 and 2 describe the conversion of P to Q and R to S, respectively. Scheme 3 describes the synthesis of T from Q and S. The total number of Br atoms in a molecule of T is _____

Scheme 1 :

$$\mathbf{P}^{\text{NH}_2} \qquad \begin{array}{c} \text{(i) } \text{Br}_2 \text{ (excess), } \text{H}_2\text{O} \\ \text{(ii) } \text{NaNO}_2, \text{HCl, } 273 \text{ K} \\ \text{(iii) } \text{CuCN/KCN} \\ \text{(iv) } \text{H}_3 \text{O}^+, \Delta \\ \text{(major)} \\ \text{(v) } \text{SOCl}_2, \text{pyridine} \end{array} \qquad \mathbf{Q}$$

Scheme 2 :

Scheme 3 :

$$\mathbf{S} \xrightarrow{(i) \text{ NaOH}} \mathbf{T}$$
(ii) **Q** (major)

Ans. (4.00)

Sol. Scheme 1 :

Scheme 2 :

Scheme 3 :

- 6. At 143 K. the reaction of XeF_4 with O_2F_2 produces a xenon compound **Y**. The total number of lone pair(s) of electrons present on the whole molecule of **Y** is _____
- Ans. (19.00)
- Sol. $XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2$ Y

Y has 3 lone pair of electron in each fluorine and one lone pair of electron in xenon.

Hence total lone pair of electrons is 19.

Ans.(19)