Detailed Analysis of GATE 2015 Paper

GATE ME Solved 2015 Paper (Set I) Detailed Analysis

Subject	Topic	1 Mark Questions	2 Marks Questions	Total Questions	Total Marks
General Ability	Numerical Ability	1	4	5	9
	Verbal Ability	4	1	5	6
Total Marks					15
Engineering Maths	Linear Algebra	1	1	2	3
	Probability and Distribution	1	0	1	1
	Numerical Method	1	1	2	3
	Calculus	2	1	3	4
	Laplace Transform	0	1	1	2
Total Marks					13
Engineering Mechanics	Statics	2	0	2	2
	Dynamics	0	1	1	2
Total Marks					4
Strength of Materials	Shear Force \& Bending Moment	0	1	1	2
	Mohr's Circle	1	0	1	1
	Area Moment of Inertia	0	1	1	2
Total Marks					5
Theory of Machines	Mechanism	1	2	3	5
	Gear Trains	1	0	1	1
	Vibration	1	1	2	3
	Flywheel	0	1	1	2
Total Marks					11
Machine Design	Design for Dynamic Loading	1	0	1	1
	Design of Joints	0	1	1	2
	Design of Bearings	0	1	1	2
Total Marks					5
Fluid Mechanics	Fluid Dynamic	1	0	1	1
	Flow Through Pipes	1	0	1	1
	Fluid Kinematics	0	1	1	2
	Hydraulic Machine	0	1	1	2
Total Marks					6
Heat Transfer	Conduction	0	1	1	2
	Convection	1	0	1	1
	Radiation	0	1	1	2
	Heat Exchanger	1	0	1	1
Total Marks					6
Thermodynamics	Basic Thermodynamics	0	2	2	4
	Power Engineering	1	0	1	1
	Thermodynamic Cycle and Property Relations	1	0	1	1
	Refrigeration	0	2	2	4

cxvi | Detailed Analysis of GATE 2015 Paper

	Properties of Gases and Pure Substances	1	1	2	3
Total Marks					$\mathbf{1 3}$
Manufacturing Process Engineering	Engineering Materials	1	0	1	1
	Casting	1	2	3	5
	Forming Process	0	1	1	2
	Joining Process	1	0	1	1
	Machining and Machine Operation	1	2	3	5
	Computer Integrated Manufacturing	1	1	2	3
Total Marks				$\mathbf{1 7}$	
Industrial Engineering		0	1	1	2
	Operational Research	0	1	1	2
	Inventory Control	1	0	1	1
Total Marks	Production Planning \& Control				$\mathbf{5}$

GATE ME Solved 2015 Paper (Set 2) Detailed Analysis

Subject	Topic	1 Mark Questions	2 Marks Questions	Total Questions	Total Marks
General Ability	Numerical Ability	1	4	5	9
	Verbal Ability	4	1	5	6
Total Marks					15
Engineering Maths	Linear Algebra	1	0	1	1
	Probability and Distribution	1	1	2	3
	Numerical Method	1	1	2	3
	Calculus	1	0	1	1
	Differential Equation	0	1	1	2
	Complex Variable	1	0	1	1
Total Marks					11
Engineering Mechanics	Statics	1	1	2	3
	Dynamics	2	2	4	6
Total Marks					9
Strength of Materials	Simple Stress \& Strain	1	0	1	1
	Deflection of Beams	0	1	1	2
	Torsion	1	0	1	1
	Column	1	0	1	1
Total Marks					5
Theory of Machines	Mechanism	1	0	1	1
	Gear Trains	0	1	1	2
	Vibration	0	3	3	6
Total Marks					9
Machine Design	Design for Static Loading	0	1	1	2
	Design for Dynamic Loading	1	0	1	1
	Design of Joints	0	1	1	2
Total Marks					5
Fluid Mechanics	Fluid Dynamic	0	1	1	2

	Flow Through Pipes	1	1	2	3
	Boundary Layer	1	1	1	1
	Fluid Kinematics	0	2	2	4
					$\mathbf{1 0}$
Total Marks	Conduction	0	1	1	2
Heat Transfer	Convection	1	1	2	3
					$\mathbf{5}$
Total Marks	Basic Thermodynamics	2	2	4	6
Thermodynamics	Power Engineering	0	1	1	2
	Thermodynamic Cycle and Property Relations	1	0	1	1
	Psychrometrics	1	0	1	1
					$\mathbf{1 0}$
Total Marks					
Manufacturing Process Engineering	Joining Process	1	2	3	
	Machining and Machine Operation	1	1	2	3
	Metrology and Inspection	1	2	3	5
	Computer Integrated Manufacturing	1	1	2	3
	Metal Cutting	1	1	2	3
Total Marks					$\mathbf{1 7}$
Industrial Engineering	Forecast	0	1	1	2
	PERT \& CPM	0	1	1	2
Total Marks					$\mathbf{4}$

GATE ME Solved 2015 Paper (Set 3) Detailed Analysis

Subject	Topic	1 Mark Questions	2 Marks Questions	Total Questions	Total Marks
General Ability	Numerical Ability	1	4	5	9
	Verbal Ability	4	1	5	6
Total Marks					15
Engineering Maths	Linear Algebra	1	0	1	1
	Probability and Distribution	1	1	2	3
	Numerical Method	0	1	1	2
	Calculus	1	0	1	1
	Differential Equation	0	1	1	2
	Vector Calculus	1	1	2	3
	Laplace Transform	1	0	1	1
Total Marks					13
Engineering Mechanics	Statics	0	1	1	2
	Dynamics	1	1	2	3
Total Marks					5
Strength of Materials	Simple Stress \& Strain	1	1	2	3
	Shear Force \& Bending Moment	0	1	1	2
	Slope \& Deflection of Beams	0	1	1	2
	Torsion	0	2	2	4
	Mohr's Circle	1	1	2	3
Total Marks					14

cxviii | Detailed Analysis of GATE 2015 Paper

Theory of Machines	Mechanism	0	1	1	2
	Gear Trains	1	0	1	1
	Vibration	1	1	2	3
Total Marks					6
Machine design	Theories of Failure	1	0	1	1
Total Marks					1
Fluid Mechanics	Fluid Dynamic	1	0	1	1
	Flow Through Pipes	0	2	2	4
	Fluid Kinematics	1	0	1	1
Total Marks					6
Heat Transfer	Conduction	1	1	2	3
	Convection	1	0	1	1
	Radiation	0	1	1	2
	Heat Exchanger	0	1	1	2
Total Marks					8
Thermodynamics	Basic Thermodynamics	1	2	3	5
	Power Engineering	1	1	2	3
	Thermodynamic Cycle and Property Relations	0	1	1	2
	Refrigeration	1	0	1	1
	IC Engine	1	0	1	1
Total Marks					12
Manufacturing Process Engineering	Engg Materials	1	0	1	1
	Casting	0	1	1	2
	Forming Process	0	1	1	2
	Joining Process	0	1	1	2
	Metrology and Inspection	1	0	1	1
	Computer Integrated Manufacturing	1	0	1	1
	Advance Machining	1	1	2	3
	Metal Cutting	0	1	1	2
Total Marks					14
Industrial Engineering	Operational Research	1	1	2	3
	Inventory Control	1	1	2	3
Total Marks					6

GATE 2015 Solved Paper ME: Mechanical Engineering Set - I

Number of Questions: 65
Total Marks:100.0

Wrong answer for MCQ will result in negative marks, (-1/3) for 1 Mark Questions and (-2/3) for 2 Marks Questions.

General Aptitude

Number of Questions: 10

Section Marks: 15.0
Q. 1 to Q. 5 carry 1 mark each and Q. 6 to Q. 10 carry 2 marks each.
Question Number: $1 \quad$ Question Type: MCQ
Select the appropriate option in place of underlined part of the sentence.
Increased productivity necessary reflects greater efforts made by the employees.
(A) Increase in productivity necessary
(B) Increase in productivity is necessary
(C) Increase in productivity necessarily
(D) No improvement required

Solution: The given sentence is incorrect. The use of 'necessary' is incorrect. 'Necessary' here is an adjective and it is incorrect. The sentence requires the use of an adverb which would define 'reflects' that is a verb. 'Increase in' is a better usage than 'increased' as the latter would mean that 'productivity' increased by itself, which is illogical.
Hence, the correct option is (C).
Question Number: 2
Question Type: MCQ
Given below are two statements followed by two conclusions. Assuming these statements to be true, decide which one logically follows.
Statements:
(I) No manager is leader.
(II) All leaders are executives.

Conclusions:
(I) No manager is an executive
(II) No executive is a manager
(A) Only conclusion I follows
(B) Only conclusion II follows
(C) Neither conclusions I nor II follows
(D) Both conclusions I and II follows

Solution: No manager is a leader
This is a universal negative statement where manager and leader both are distributed.

All leaders are executives is a universal affirmative statement.
Where subject is distributed and predicate is not.
So the conclusion has to be of the form of universal negative or particular negative.
No manager is an executive, also
No executive is a manager
In either of the statements, both manager and executive are distributed.
So it satisfies all the rules. But it does not satisfy the rule, "If a term distributed in the conclusion should be distributed in the premises also. But executives is not distributed in the premise".
Both conclusions do not follow.
Hence, the correct option is (C).
Question Number: 3
Question Type: NAT
In the given figure, angle Q is a right angle, $P S: Q S=3: 1$, $R T: Q T=5: 2$ and $P U: U R=1: 1$. If the area of triangle $Q T S$ is $20 \mathrm{~cm}^{2}$, then the area of triangle $P Q R$ in cm^{2} is \qquad

Solution:
Area of triangle $P Q R=\frac{1}{2}(Q R)(P Q)$

$$
\begin{aligned}
& =\frac{1}{2}(Q T+T R)(P S+S Q) \\
& =\frac{1}{2}\left(Q T+\frac{5}{2} Q T\right)(3 S Q+S Q) \\
& =14(\text { Area of triangle } Q T S) \\
& =14(20)=280
\end{aligned}
$$

Hence, the correct answer is 280.

Question Number: 4

Question Type: MCQ
Right triangle $P Q R$ is to be constructed in the $x y$ plane so that the right angle is at P and line PR is parallel to the x-axis. The x and y coordinates of P, Q and R are to be integers that satisfy the inequalities: $-4 \leq x \leq 5$ and $6 \leq$ $y \leq 16$. How many different triangles could be constructed with these properties?
(A) 110
(B) 1,100
(C) 9,900
(D) 10,000

Solution: $P R$ is parallel to the x-axis.
\therefore The y-coordinates of P and R are the same.
The triangle $P Q R$ is right angled at P.
\therefore The x-coordinates of P and Q are the same.
The x and y coordinates of P, Q, and R are to be integers satisfying the inequalities $-4 \leq x \leq 5$ and $6 \leq y \leq 16$.
The x and y coordinates of P have 10 and 11 possible values, respectively
\therefore The coordinates of P have (10) (11) possible values, i.e., 110 possible values.
For each possible location of P, R has 9 possible locations ($\because R$ must have the same y coordinate as P, and it must have some x coordinate other than that of P).
Similarly, for each possible location of P, Q has 10 possible locations.
\therefore Number of different triangles which could be constructed $=(90)(110)=9900$.
Hence, the correct option is (C).

Question Number: 5
 Question Type: MCQ

A coin is tossed thrice. Let X be the event that head occurs in each of the first two tosses. Let Y be the event that a tail occurs on the third toss. Let Z be the event that two tails occur in three tosses. Based on the above information, which one of the following statements is TRUE?
(A) X and Y are not independent
(B) Y and Z are dependent
(C) Y and Z are independent
(D) X and Z are independent

Solution: X is the event of getting $H H$. $P(X)=\frac{2}{8}$
Y is the event of getting $H P(Y)=\frac{4}{8}$
Z is the event of getting $T T H$ or $T H T$ or $H T T$

$$
\therefore \quad P(Z)=\frac{3}{8}
$$

Two events A and B are said to be independent if $P(A \cap B)$ equals $P(A)$ multiplied by $P(B)$. Otherwise, those events are said to be dependent.

$$
P(Y \cap Z)=P
$$

(Tails occurring in the third toss and in one other toss) $=P$ $(T H T$ or $H T T)=\frac{2}{8}$

$$
P(Z) \times P(Y)=\frac{3}{8} \times \frac{1}{2}=\frac{3}{16}
$$

\therefore As $P(Z \cap Y) \neq P(Z) \times P(Y), Y$ and Z are dependent.
Hence, the correct option is (B).

Question Number: 6
 Question Type: MCQ

Choose the appropriate word/phrase, out of the four options given below, to complete the following sentence:
Apparent lifelessness dormant life
(A) harbours
(B) leads to
(C) supports
(D) affects

Solution: The correct option is (A).
Question Number: 7
Question Type: MCQ
Fill in the blank with the correct idiom/phrase.
That boy from the town was a \qquad in the sleepy village
(A) dog out of herd
(B) sheep from the heap
(C) fish out of water
(D) bird from the flock

Solution: 'Fish out of water' means to be out of place. The other choices are incorrect as they do not exist.
Hence, the correct option is (C).
Question Number: 8
Question Type: MCQ
Choose the statement where underlined word is used correctly.
(A) When the teacher eludes to different authors, he is being elusive.
(B) When the thief keeps eluding the police, he is being elusive.
(C) Matters that are difficult to understand, identify or remember are allusive.
(D) Mirages can be allusive, but a better way to express them is illusory.

Solution: 'Elusive' means hard to find or capture. 'Allusive' means a statement that refers to something without actually mentioning it. Only choice (B) uses the word correctly.
Hence, the correct option is (B).
Question Number: 9
Question Type: MCQ
Tanya is older than Eric.
Cliff is older than Tanya.
Eric is older than Cliff.
If the first two statements are true, then the third statement is:
(A) True
(B) False
(C) Uncertain
(D) Data insufficient

Solution: Tanya is older than Eric can be represented as $T>E$

Clift is older than Tanya can be represented as $C>T$
Combining both of them, we get $C>T>E$
This implies that Clift is older than Eric, meaning that Eric is older than Clift is False.

Hence, the correct option is (B).

Question Number: 10

Question Type: MCQ
Five teams have to compete in a league, with every team playing every other team exactly once, before going to the
next round. How many matches will have to be held to complete the league round of matches?
(A) 20
(B) 10
(C) 8
(D) 5

Solution: Every team plays every other team exactly once.
\therefore Each pair of teams plays a match and they are $\frac{5 \times 4}{2}$, i.e.,
10 pairs.
A total of 10 matches will have to be held to complete the league round of matches.
Hence, the correct option is (B).

Mechanical Engineering

Number of Questions: 55

Section marks: $\mathbf{8 5 . 0}$

Q. 11 to Q. 35 carry 1 mark each and Q. 36 to Q. 65 carry

 2 marks each.Question Number: 11 Question Type: MCQ
An air-standard diesel cycle consists of the following processes.
$1-2$: Air is compressed isentropically.
$2-3$: Heat is added at constant pressure.
$3-4$: Air expands isentropically to the original volume.
$4-1$: Heat is rejected at constant volume
If γ and T denote the specific heat ratio and temperature, respectively, the efficiency of the cycle is
(A) $1-\frac{T_{4} T_{1}}{T_{3} T_{2}}$
(B) $1-\frac{T_{4}-T_{1}}{\gamma\left(T_{3}-T_{2}\right)}$
(C) $1-\frac{\gamma\left(T_{4}-T_{1}\right)}{T_{3}-T_{2}}$
(D) $1-\frac{T_{4}-T_{1}}{(\gamma-1)\left(T_{3}-T_{2}\right)}$

Solution: $\eta=\frac{Q_{S}-Q_{R}}{Q_{S}}$

$$
\begin{aligned}
& \Rightarrow \eta=\frac{\left(h_{3}-h_{2}\right)-\left(h_{4}-h_{1}\right)}{\left(h_{3}-h_{2}\right)} \\
& \Rightarrow \eta=\frac{m C_{P}\left(T_{3}-T_{2}\right)-m C_{V}\left(T_{4}-T_{1}\right)}{m C_{P}\left(T_{3}-T_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \eta=1-\frac{m C_{V}\left(T_{4}-T_{1}\right)}{m C_{P}\left(T_{3}-T_{2}\right)} \\
& \Rightarrow \eta=1-\frac{\left(T_{4}-T_{1}\right)}{\gamma\left(T_{3}-T_{2}\right)}
\end{aligned}
$$

Hence, the correct option is (B).
Question Number: 12
Question Type: MCQ
The value of moment of inertia of the section shown in the figure about the axis- $X X$ is

(A) $8.5050 \times 10^{6} \mathrm{~mm}^{4}$
(B) $6.8850 \times 10^{6} \mathrm{~mm}^{4}$
(C) $7.7625 \times 10^{6} \mathrm{~mm}^{4}$
(D) $8.5725 \times 10^{6} \mathrm{~mm}^{4}$

Solution: Moment of inertia of the section about $X X$ axis,

$$
I_{X X}=\left[I_{1}-\left(I_{2}+I_{3}\right)\right]_{X X}
$$

Due to symmetry, $I_{2}=I_{3}=I_{\mathrm{G}}+A h^{2}$
where $I_{\mathrm{G}}=$ Moment of inertia about center of gravity
$A=$ Area of cross-section.
$h=$ Distance between center of gravity and $X X$ axis.
Now,

$$
(I)_{X X}=\frac{b d^{3}}{12}=\frac{60 \times 120^{3}}{12}
$$

$$
\begin{aligned}
\left(I_{2}\right)_{X X} & =\frac{b d^{3}}{12}+A h^{2}=\left(\frac{30 \times 30^{3}}{12}\right)+\left[30 \times 30 \times 30^{2}\right] \\
\left(I_{2}\right)_{X X} & =\left[\frac{60 \times 120^{3}}{12}\right]-\left[2 \times\left\{\frac{30^{4}}{12}+30^{4}\right\}\right] \\
I_{X X} & =6.8850 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Hence, the correct option is (B).

Question Number: 13

Question Type: NAT
Figure shows a wheel rotating about O_{2}. Two points A and B located along the radius of wheel have speeds of $80 \mathrm{~m} / \mathrm{s}$ and $140 \mathrm{~m} / \mathrm{s}$, respectively. The distance between the points A and B is 300 mm . The diameter of the wheel (in mm) is \qquad

Solution: Let $O_{2} B=r_{B}$ and $O_{2} A=r_{A}$
Now

$$
V_{A}=\omega_{2} r_{A}
$$

$\Rightarrow \quad \omega_{2}=\frac{V_{A}}{r_{A}}$ and $V_{B}=\omega_{2} r_{B}$

$$
\begin{aligned}
\Rightarrow & \omega_{2}=\frac{V_{B}}{r_{B}} \\
& \therefore \frac{V_{A}}{r_{A}}=\frac{V_{\mathrm{B}}}{r_{B}} \Rightarrow \frac{80}{r_{A}}=\frac{140}{r_{B}} \\
\Rightarrow \quad & 80 r_{B}-140 r_{A}=0 \rightarrow(1) \\
& r_{B}-r_{A}=300 \mathrm{~mm} \rightarrow(2)
\end{aligned}
$$

[given]
From Eqs. (1) and (2), we get $r_{B}=700 \mathrm{~mm}$
\Rightarrow Diameter of the wheel, $D=2 r_{B}=2 \times 700$

$$
\therefore \quad D=1400 \mathrm{~mm}
$$

Hence, the correct answer is 1390 to 1410 .
Question Number: 14
Question Type: MCQ
Figure shows a single degree of freedom system. The system consists of a massless rigid bar $O P$ hinged at O and mass m at end P. The natural frequency of vibration of the system is \qquad —.

(A) $f_{\mathrm{n}}=\frac{1}{2 \pi} \sqrt{\frac{k}{4 m}}$
(B) $f_{\mathrm{n}}=\frac{1}{2 \pi} \sqrt{\frac{k}{2 m}}$
(C) $f_{\mathrm{n}}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
(D) $f_{\mathrm{n}}=\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}}$

Solution:
Static free-body diagram

$$
\begin{equation*}
\Sigma M_{\mathrm{o}}=0 \Rightarrow-m g(2 a)+F_{\mathrm{s}}(a)=0 \tag{1}
\end{equation*}
$$

Dynamic free-body diagram

$$
\Sigma M_{\mathrm{o}}=I_{\mathrm{o}}(-\ddot{\theta})
$$

$$
\begin{array}{cc}
\Rightarrow & -m g(2 a)+\left[F_{\mathrm{s}}+k \theta(a)\right] a \\
& =I_{\mathrm{o}}(-\ddot{\theta}) \Rightarrow m g(2 a)+F_{\mathrm{s}}(a)+k \theta\left(a^{2}\right)=I_{\mathrm{o}}(-\ddot{\theta}) \\
\Rightarrow & 0+I_{\mathrm{o}}(\ddot{\theta})+k \theta\left(a^{2}\right)=0 \quad \text { [From Eq. } \tag{1}\\
\Rightarrow & m(2 a)^{2} \ddot{\theta}+k\left(a^{2}\right) \theta=0 \\
\Rightarrow & \ddot{\theta}+\left(\frac{k a^{2}}{4 m a^{2}}\right) \theta=0 \\
\therefore & \omega_{\mathrm{n}}=\sqrt{\frac{k}{4 m}} \text { or } f_{\mathrm{n}}=\frac{1}{2 \pi} \sqrt{\frac{k}{4 m}}
\end{array}
$$

Hence, the correct option is (A).
Question Number: 15
Question Type: MCQ
The number of degrees of freedom of the linkage shown in the figure is

(A) -3
(B) 0
(C) 1
(D) 2

Solution: No. of links $=6$ (n)

$$
\begin{aligned}
\text { No. of binary joints } & =7(P) \\
\text { Degrees of freedom } & =3(n-1)-2 P \\
& =3 \times 5-2 \times 7=1
\end{aligned}
$$

Hence, the correct option is (C).
Question Number: 16
Question Type: NAT
For ball bearings, the fatigue life L measured in the number of revolutions and the radial load F are related by $F L^{1 / 3}=$ K, where K is a constant. It withstands a radial load of 2 kN for a life of 540 million revolutions. The load (in kN) for a life of one million revolutions is \qquad -.

Solution:

$$
\begin{array}{cc}
& F L^{1 / 3}=K \\
& F_{1}=2 \mathrm{kN}, L_{1}=540 \mathrm{Mrev} \\
& L_{2}=1 \mathrm{Mrev} \Rightarrow\left(2 \times 10^{3}\right) \cdot\left(540 \times 10^{6}\right)^{1 / 3}=K \\
\Rightarrow & K=1628650.57 \\
\therefore & F_{2} \cdot L_{2}^{1 / 3}=\mathrm{K} \\
\therefore & F_{2}=K \cdot L_{2}^{-1 / 3}
\end{array}
$$

$$
F_{2}=16.286 \mathrm{kN}
$$

Hence, the correct answer is 15 to 17 .

Question Number: 17

Question Type: NAT
In a rolling operation using rolls of diameter 500 mm , if a 25 mm thick plate cannot be reduced to less than 20 mm in one pass, the coefficient of friction between the roll and the plate is \qquad
Solution: Change in thickness $(\triangle h)=25-20=5 \mathrm{~mm}$
Roll diameter $=500 \mathrm{~mm} \Rightarrow R=250 \mathrm{~mm}$

$$
\begin{array}{lc}
\therefore & \triangle h=\mu^{2} R \\
\therefore & 5=\mu^{2} 250 \Rightarrow \mu=\sqrt{\frac{1}{50}}=0.141
\end{array}
$$

Hence, the correct answer is 0.10 to 0.15 .
Question Number: 18
Question Type: NAT
Ratio of solidification time of a cylindrical casting (height $=$ radius) to that of a cubic casting of side two times the height of cylindrical casting is \qquad -.
Solution: Solidification time $\propto\left(\frac{V}{S A}\right)^{2}$
$T_{\mathrm{Cy}}=$ solidification time of cylinder casting

$$
=\left(\frac{\pi r^{2} h}{2 \pi r^{2}+2 \pi r h}\right)^{2}
$$

$$
r=h
$$

$$
\therefore \quad T_{\mathrm{Cy}}=\left(\frac{\pi r^{3}}{4 \pi r^{2}}\right)^{2}=\left(\frac{r}{4}\right)^{2}=\frac{h^{2}}{16}
$$

$T_{\mathrm{Cu}}=$ solidification time of cubic casting
$=\left(\frac{a^{3}}{6 a^{2}}\right)^{2}=\left(\frac{a}{6}\right)^{2}=\left(\frac{a}{6}\right)^{2}=\frac{a^{2}}{36}$

Hence, the correct answer is 0.5 to 0.6 .
Question Number: 19
Question Type: NAT
The annual requirement of rivets at a ship manufacturing company is 2000 kg . The rivets are supplied in units of 1 kg costing ₹ 25 each. If it costs ₹ 100 to place an order and the annual cost of carrying one unit is 9% of its purchase cost, the cycle length of the order (in days) will be

Solution: Annual requirement $D=2000 \mathrm{~kg}$

$$
\begin{aligned}
& a=2 h \\
& \therefore \quad T_{\mathrm{Cu}}=\frac{h^{2}}{9} \\
& \therefore \quad T_{\mathrm{Cy}}: T_{\mathrm{Cu}}=9: 16=0.5625
\end{aligned}
$$

$$
\begin{aligned}
\text { Unit cost } & =₹ 25 / \mathrm{kg} \\
\text { Carrying cost } & =C_{\mathrm{C}}=9 \% \text { of unit cost } \\
& =\frac{9}{100} \times 25=₹ 2.25 / \mathrm{unit} / \text { year } \\
\text { Ordering cost } & =C_{\mathrm{o}}=₹ 100 / \text { order } \\
q & =\text { optimum order quantity } \\
& =\sqrt{\frac{2 D C_{\mathrm{o}}}{C_{\mathrm{C}}}}=\sqrt{\frac{2 \times 2000 \times 100}{2.25}} \\
& =421.64 \mathrm{~kg} \\
\therefore \text { No. of orders } & =\frac{D}{q}=\frac{2000}{421.64}=4.743 \\
\text { Cycle length } & =\frac{365}{4.743}=76.948 \Rightarrow 77 \text { days }
\end{aligned}
$$

Hence, the correct answer is 76 to 78 .

Question Number: 20

Question Type: MCQ
Orthogonal turning of a mild steel tube with a tool of rake angle 10° is carried out at a feed of $0.1 \mathrm{~mm} / \mathrm{rev}$. If the thickness of the chip produced is 0.28 mm , the values of shear angle and shear strain will be respectively
(A) $28^{\circ} 20^{\prime}$ and 2.19
(B) $22^{\circ} 20^{\prime}$ and 3.53
(C) $24^{\circ} 30^{\prime}$ and 4.19
(D) $37^{\circ} 20^{\prime}$ and 5.19

Solution:

Rake angle, $\alpha=10^{\circ}$, feed $=0.14 \mathrm{~mm} / \mathrm{rev}$
Chip thickness, $t_{\mathrm{c}}=0.28 \mathrm{~mm}$
The initial thickness of the chip in turning is given by the feed, i.e., $t=0.14 \mathrm{~mm}$

$$
\begin{array}{lc}
\therefore & r=\frac{t}{t_{\mathrm{C}}}=\frac{0.14}{0.28}=0.5 \\
& r=\frac{\sin \varphi}{\cos (\varphi-\alpha)}=0.5 \\
\Rightarrow & \frac{\cos \varphi \cos \alpha+\sin \varphi \sin \alpha}{\sin \varphi}=2 \\
\therefore \quad & \cot \varphi \cos \alpha+\sin \alpha=2 \\
\therefore \quad & \varphi=28.33^{\circ} \\
& \text { Shear strain }= \\
& \delta=\cot \varphi+\tan (\varphi-\alpha) \\
& \cot (28.33)+\tan (28.33-10)=2.186
\end{array}
$$

Hence, the correct option is (A).

Question Number: 21

Question Type: MCQ
In a CNC milling operation, the tool has to machine the circular arc from point $(20,20)$ to $(10,10)$ at a sequence number 5 of the CNC part program. If the center of the arc is at
$(20,10)$ and the machine has incremental mode of defining position coordinates, the correct tool path command is
(A) N05 G90 G01 X-10 Y-10 R10
(B) N05 G91 G03 X-10 Y-10 R10
(C) N05 G90 G03 X20 Y20 R10
(D) N05 G91 G02 X20 Y20 R10

Solution: From the given points, $(20,20)$ to $(10,10)$ with center at $(20,10)$, the radius of the circular arc is 10 . The tool starts at $(20,20)$ and traverse counter clockwise with a radius 10 and center at $(20,10)$ upto the point $(10,10)$.
The sequence number is $5 \Rightarrow N 05$
Incremental input $\Rightarrow G 91$
Counter clockwise circular interpolation $\Rightarrow G 03$

The tool being at point $(20,20)$ takes it as origin. The end point $(10,10)$ is given by $X-10, Y-10$.
\therefore The command is
$N 05 \quad G 91 \quad G 03 \quad X-10 \quad Y-10 \quad R 10$
Hence, the correct option is (B).
Question Number: 22
Question Type: NAT
A Prandtl tube (Pitot-static tube with $C=1$) is used to measure the velocity of water. The differential manometer reading is 10 mm of liquid column with a relative density of 10 . Assuming $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, the velocity of water (in m/s) is \qquad

Solution:

Velocity of water $=C \sqrt{2 g h}=\sqrt{2 g h} \quad[\because C=1]$

$$
h=x\left[\frac{S_{\mathrm{g}}}{S_{\mathrm{w}}}-1\right]=10\left[\frac{10}{1}-1\right]=90 \mathrm{~mm} \text { or } h=0.09 \mathrm{~m}
$$

$$
\text { Velocity of water }=\sqrt{2 \times 9.81 \times 0.09}=1.3288 \mathrm{~m} / \mathrm{s}
$$

Hence, the correct answer is 1.30 to 1.34 .
Question Number: 23
Question Type: NAT
Refrigerant vapor enters into the compressor of a standard vapor compression cycle at $-10^{\circ} \mathrm{C}(h=402 \mathrm{~kJ} / \mathrm{kg})$ and leaves the compressor at $50^{\circ} \mathrm{C}(h=432 \mathrm{~kJ} / \mathrm{kg})$. It leaves the condenser at $30^{\circ} \mathrm{C}(h=237 \mathrm{~kJ} / \mathrm{kg})$. The COP of the cycle is \qquad

Solution:

Given:

$$
\begin{aligned}
h_{1} & =402 \mathrm{~kJ} / \mathrm{kg}, h_{2}=432 \mathrm{~kJ} / \mathrm{kg}, \\
h_{3} & =h_{4}=237 \mathrm{~kJ} / \mathrm{kg} \\
C O P & =\frac{R \cdot E}{W}=\frac{h_{1}-h_{4}}{h_{2}-h_{1}}=\frac{402-237}{432-402} \\
\therefore \quad C O P & =5.5
\end{aligned}
$$

Hence, the correct answer is 5.5 .

Question Number: 24

Question Type: NAT
Steam enters a turbine at $30 \mathrm{bar}, 300^{\circ} \mathrm{C}(u=2750 \mathrm{~kJ} / \mathrm{kg}$, $h=2993 \mathrm{~kJ} / \mathrm{kg}$) and exits the turbine as saturated liquid at $15 \mathrm{kPa}(u=225 \mathrm{~kJ} / \mathrm{kg}, h=226 \mathrm{~kJ} / \mathrm{kg})$. Heat loss to the surrounding is $50 \mathrm{~kJ} / \mathrm{kg}$ of steam flowing through the turbine. Neglecting changes in kinetic energy and potential energy, the work output of the turbine (in $\mathrm{kJ} / \mathrm{kg}$ of steam) is \qquad -.

Solution:

Neglecting $\triangle \mathrm{K}$.E and \triangle P.E, SFEE is

$$
\begin{aligned}
& & h_{1}+Q & =h_{2}+W \Rightarrow W=\left(h_{1}-h_{2}\right)+Q \\
\therefore & & W & =(2750-226)-50=2717 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Hence, the correct answer is 2717.
Question Number: 25
Question Type: NAT
Air in a room is at $35^{\circ} \mathrm{C}$ and 60% relative humidity (RH). The pressure in the room is 0.1 MPa . The saturation pressure of water at $35^{\circ} \mathrm{C}$ is 5.63 kPa . The humidity ratio of the air (in gram $/ \mathrm{kg}$ of dry air) is \qquad

Solution: $\mathrm{RH}=0.6=\frac{P_{V}}{P_{S}} \Rightarrow P_{\mathrm{V}}=0.6 \times 5.63$
$\Rightarrow \quad P_{\mathrm{V}}=3.378 \mathrm{kPa}$
Humidity ratio, $\omega=0.622 \frac{P_{V}}{P P_{V}}=0.622 \times \frac{3.378}{100-3.378}$
$\therefore \omega=0.0217457 \mathrm{~kg} / \mathrm{kg}$ of dry air
or $\omega=21.7457 \mathrm{gram} / \mathrm{kg}$ of dry air.
Hence, the correct answer is 21.7 to 21.9.
Question Number: 26
Question Type: MCQ

A solid sphere 1 of radius ' r ' is placed inside a hollow, closed hemispherical surface 2 of radius ' $4 r$ '. The shape factor F_{2-1} is
(A) $1 / 12$
(B) $1 / 2$
(C) 2
(D) 12

Solution:

Hence, the correct option is (A).
Question Number: 27
Question Type: NAT
The value of $\int_{C}\left[\left(3 x-8 y^{2}\right) \mathrm{dx}+(4 y-6 x) \mathrm{dy}\right]$, (where C is the boundary of the region bounded by $x=0, y=0$ and $x+y=1$) is \qquad _.

Solution: We have to evaluate

$$
\int_{C}\left[\left(3 x-8 y^{2}\right) d x+(4 y-6 x y) d y\right]
$$

Let $\quad \phi(x, y)=3 x-8 y^{2}$
and $\Psi(x, y)=4 y-6 x y$
$\therefore \quad \frac{\partial \varphi}{\partial y}=-16 y$ and $\frac{\partial \Psi}{\partial x}=-6 y$
and in the region R bounded by C (i.e., triangle $O A B$), x varies from $x=0$ to $x=1-y$ and y varies from $y=0$ to $y=1$.
$\therefore \quad \int_{C}\left[\left(3 x-8 y^{2}\right) d x+(4 y-6 x y) d y\right]=\int_{C}[\varphi d x+\Psi d y]$
(By Green's theorem)

$$
\begin{aligned}
& =\iint_{R}\left(\frac{\partial \Psi}{\partial x}-\frac{\partial \varphi}{\partial y}\right) d x d y \\
& =\iint_{R}[-6 y-(-16 y)] d x d y \\
& \left.=\int_{y=0}^{1} \int_{x=0}^{1-y} 10 y d x d y=\int_{y=0}^{1}(10 x y)\right]_{x=0}^{1-y} d y \\
& =10 \int_{y=0}^{1}[(1-y) y-0 \times y] d y \\
& \left.=10 \int_{y=0}^{1}\left[y-y^{2}\right] d y=10\left(\frac{y^{2}}{2}-\frac{y^{3}}{3}\right)\right]_{0}^{1} \\
& =\frac{5}{3}=1.66 .
\end{aligned}
$$

Hence, the correct answer is 1.60 to 1.70 .
Question Number: 28
Question Type: MCQ
For a given matrix $P=\left[\begin{array}{cc}4+3 i & -i \\ i & 4-3 i\end{array}\right]$, where $i=\sqrt{-1}$, the inverse of matrix P is
(A) $\frac{1}{24}\left[\begin{array}{cc}4-3 i & i \\ -i & 4+3 i\end{array}\right]$
(B) $\frac{1}{25}\left[\begin{array}{cc}i & 4-3 i \\ 4+3 i & -i\end{array}\right]$
(C) $\frac{1}{24}\left[\begin{array}{cc}4+3 i & -i \\ i & 4-3 i\end{array}\right]$
(D) $\frac{1}{25}\left[\begin{array}{cc}4+3 i & -i \\ i & 4-3 i\end{array}\right]$

Solution:

$$
\begin{aligned}
& \text { Given matrix is } P=\left[\begin{array}{cc}
4+3 i & -i \\
i & 4-3 i
\end{array}\right] \\
& \text { Determinant of } P=\left|\begin{array}{cc}
4+3 i & -i \\
i & 4-3 i
\end{array}\right| \\
& =(4+3 i)(4-3 i)+i^{2}=24
\end{aligned}
$$

\therefore Inverse of $P=P^{-1}=\frac{1}{|P|}(\operatorname{adj} P)$

$$
=\frac{1}{24}\left[\begin{array}{cc}
4-3 i & i \\
-i & 4+3 i
\end{array}\right]
$$

Hence, the correct option is (A).
Question Number: 29
Question Type: NAT
Newton-Raphson method is used to find the roots of the equation, $x^{3}+2 x^{2}+3 x-1=0$. If the initial guess is $x_{0}=1$, then the value of x after the second iteration is \qquad
Solution: Let $f(x)=x^{3}+2 x^{2}+3 x-1$
$\Rightarrow \quad f^{\prime}(x)=3 x^{2}+4 x+3$
Given $x_{0}=1$
$\therefore \quad f\left(x_{0}\right)=f(1)=5$ and $f^{1}\left(x_{0}\right)=f^{1}(1)=10$
By Newton - Raphson method, we have

$$
\begin{aligned}
& \quad \begin{aligned}
X_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{1}\left(x_{0}\right)} \\
& =1-\frac{5}{10} \\
\therefore \quad x_{1} & =\frac{1}{2} \\
\therefore f\left(x_{1}\right)=f\left(\frac{1}{2}\right)= & \frac{9}{8}
\end{aligned} \\
& \text { and } f^{1}\left(x_{1}\right)=f^{1}\left(\frac{1}{2}\right)=\frac{23}{4}
\end{aligned}
$$

The value of x after the second iteration is

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{1}\left(x_{1}\right)} \\
& =\frac{1}{2}-\frac{\left(\frac{9}{8}\right)}{\left(\frac{23}{4}\right)} \\
& =\frac{7}{23}=0.3043 .
\end{aligned}
$$

Hence, the correct answer is 0.29 to 0.31
Question Number: 30
Question Type: MCQ
Laplace transform of the function $f(t)$ is given by

$$
F(s)=L\{f(t)\}=\int_{0}^{\infty} f(t) e^{-\mathrm{st}} \mathrm{dt}
$$

Laplace transform of the function is given by

(A) $\frac{1-e^{-2 s}}{s}$
(B) $\frac{1-e^{-s}}{2 s}$
(C) $\frac{2-2 e^{-s}}{s}$
(D) $\frac{1-2 e^{-s}}{s}$

Solution:

Given function is

$$
f(t)=\left\{\begin{array}{l}
2: 0 \leq t \leq 1 \\
0: \text { otherwise }
\end{array}\right.
$$

The Laplace transform of $f(t)$ is

$$
\begin{aligned}
L[f(t)] & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
& =\int_{\partial}^{1} e^{-s t} \times 2 d t+\int_{1}^{\infty} e^{-s t} \times 0 d t \\
& \left.=\frac{2 e^{-s t}}{-s}\right]_{0}^{1}+0=\frac{2}{-s}\left[e^{-s}-1\right] \\
& =\frac{2-2 e^{-s}}{s}
\end{aligned}
$$

Hence, the correct option is (C).

Question Number: 31

Question Type: NAT
A bullet spins as the shot is fired from a gun. For this purpose, two helical slots as shown in the figure are cut in the barrel. Projections A and B on the bullet engage in each of the slots.

Helical slots are such that one turn of helix is completed over a distance of 0.5 m . If velocity of bullet when it exists the barrel is $20 \mathrm{~m} / \mathrm{s}$, its spinning speed in $\mathrm{rad} / \mathrm{s}$ is

Solution: Assume that the loss of energy while traveling in the barrel is nil.

Velocity of the bullet $=20 \mathrm{~m} / \mathrm{s}$.
1 turn of helix has a length of 0.5 m , i.e., the bullet turns 1 rotation in a length of 0.5 m .
Time taken to travel $0.5 \mathrm{~m}=\frac{0.5}{20}=0.025 \mathrm{sec}$.
\therefore The bullet turns 1 rotation in 0.025 sec .
Spinning speed $=\frac{1}{0.025}=40 \mathrm{rot} / \mathrm{sec}=40 \times 2 \pi \mathrm{rad} / \mathrm{sec}$

$$
=251.327 \mathrm{rad} / \mathrm{sec}
$$

Hence, the correct answer is 251 to 252.
Question Number: 32
Question Type: NAT
For the overhanging beam shown in the figure, the magnitude of maximum bending moment (in $\mathrm{kN}_{1}-\mathrm{m}$) is \qquad

Solution:

$$
\begin{gather*}
R_{\mathrm{A}}+R_{\mathrm{B}}=(10 \times 4)+20=60 \tag{1}\\
\\
\Sigma M_{\mathrm{C}}=0 \Rightarrow R_{\mathrm{A}} \times 6-40 \times 4+R_{\mathrm{B}}+2=0 \tag{2}\\
\\
6 R_{\mathrm{A}}+2 R_{\mathrm{B}}=160
\end{gather*}
$$

From Eqs. (1) and (2), we get $R_{\mathrm{A}}=10 \mathrm{kN}$ and $R_{\mathrm{B}}=50 \mathrm{kN}$

$$
M_{X-X}=10 x-10 \times \frac{x}{2}
$$

Maximum bending moment in section $A B$.

$$
\frac{d M_{X-X}}{d x}=0 \Rightarrow 10-10 x=0 \Rightarrow x=1 \mathrm{~m}
$$

\therefore In $A B$, maximum bending moment

$$
\left(M_{\mathrm{AB}}\right)_{\max }=10 \times 1-10 \times \frac{1}{2}=5 \mathrm{kN}-\mathrm{m}
$$

At B,

$$
M_{\mathrm{B}}=10(4)-\frac{10(4)^{2}}{2}=-40 \mathrm{kN}-\mathrm{m}
$$

Magnitude of maximum bending moment

$$
=40 \mathrm{kN}-\mathrm{m} .
$$

Hence, the correct answer is 40 .

Question Number: 33

Question Type: NAT
The torque (in N-m) exerted on the crank shaft of a two stroke engine can be described as $T=10,000+1000$ $\sin 2 \theta-1200 \cos 2 \theta$, where θ is the crank angle as measured from inner dead center position. Assuming the resisting torque to be constant, the power (in kW) developed by the engine at 100 rpm is \qquad —.

Solution: $T_{\text {mean }}=\frac{1}{\pi} \int_{0}^{\pi} T d \theta$

$$
\begin{aligned}
& \Rightarrow T_{\text {mean }} \\
&=\frac{1}{\pi} \int_{0}^{\pi}[1000+1000 \sin 2 \theta-1200 \cos 2 \theta] d \theta \\
& \Rightarrow T_{\text {mean }} \\
&=\frac{1}{\pi}\left[10000 \theta-\frac{1000}{2} \cos 2 \theta-\frac{1200}{2} \sin 2 \theta\right]_{0}^{\pi} \\
& \Rightarrow \quad T_{\text {mean }}=10000 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

Power developed, $P=T \times \omega=\frac{10000 \times 2 \pi \times 100}{60}$
$\therefore \quad P=104.719 \mathrm{~kW}$
Hence, the correct answer is 104 to 105 .
Question Number: 34
Question Type: NAT
A cantilever bracket is bolted to a column using three M12 $\times 1.75$ bolts P, Q, and R. The value of maximum shear stress developed in the bolt P (in MPa) is \qquad

Solution:

Primary shear force:

$$
P_{1}=P_{3}=P_{2}=\frac{9}{3}=3 \mathrm{kN}
$$

Secondary shear force:

$$
\begin{aligned}
& P_{1}^{1}=P_{3}^{1}=\frac{P e\left(L_{1} \text { or } L_{3}\right)}{\left(L_{1}^{2}+L_{3}^{2}\right)} \\
& \Rightarrow P_{1}^{1}+P_{3}^{1}=\frac{9 \times 0.25 \times 0.03}{2 \times 0.03^{2}}=37.5 \mathrm{kN}
\end{aligned}
$$

Resultant force on critical rivet,

$$
R=\sqrt{37.5^{2}+3^{2}}=37.62 \mathrm{kN}
$$

Maximum shear stress, $T_{\max }=\frac{R}{A}$
$\therefore T_{\max }=\frac{37.62 \times 10^{3}}{\pi / 4 \times 0.012^{2}}=332.632 \mathrm{MPa}$

Hence, the correct answer is 332 to 494.
Question Number: 35
Question Type: MCQ
A shaft of length 90 mm has a tapered portion of length 55 mm . The diameter of the taper is 80 mm at one end and 65 mm at the other. If the taper is made by tailstock set over method, the taper angle and the set over respectively are
(A) $15^{\circ} 32^{\prime}$ and 12.16 mm
(B) $18^{\circ} 32^{\prime}$ and 15.66 mm
(C) $11^{\circ} 22^{\prime}$ and 10.26 mm
(D) $10^{\circ} 32^{\prime}$ and 14.46 mm

Solution: The angle by which the axis of rotation is shifted is equal to the half angle of taper in tailstock set over method.
$D=80 \mathrm{~mm}, d=65 \mathrm{~mm}$, and taper length $=55 \mathrm{~mm}$ (1)

$$
\tan \alpha=\frac{D-d}{2 l}=\frac{80-65}{55} \Rightarrow \alpha=\tan ^{-1}\left(\frac{3}{11}\right)=15.25^{\circ}
$$

The set over is given by $=S=L \times \frac{D-d}{2 l}$
$L=$ overall length of shaft $=90 \mathrm{~mm}$

$$
\therefore \quad S=90 \times \frac{80-65}{2 \times 55}=12.27 \mathrm{~mm}
$$

Hence, the correct option is (A).

Question Number: 36

Question Type: NAT
The dimensions of a cylindrical side riser (height $=$ diameter) for a $25 \mathrm{~cm} \times 15 \mathrm{~cm} \times 5 \mathrm{~cm}$ steel casting are to be determined. For the tabulated shape factor values given below, the diameter of the riser (in cm) is \qquad

Shape factor	2	4	6	8	10	12
Riser volume/ Casting volume	1.0	0.70	0.55	0.50	0.40	0.35

Solution: By Naval Research Laboratory method shape
factor, $\mathrm{SF}=\frac{\text { length }+ \text { width }}{\text { thickness }}=\frac{25+15}{5}=\frac{40}{5}=8$ for a $\mathrm{SF}=$ 8 , the volume ratio $=0.5$.

$$
\begin{aligned}
& \therefore \frac{\text { riser volume }}{\text { casting volume }}=0.5 \\
& \frac{\frac{\pi}{4} d^{3}}{25 \times 15 \times 5}=0.5 \Rightarrow d=10.6 \mathrm{~cm}
\end{aligned}
$$

Hence, the correct answer is 10.5 to 10.7 .

Question Number: 37
Question Type: MCQ
For the linear programming problem:

$$
\text { Maximize } Z=3 X_{1}+2 X_{2}
$$

Subject to

$$
\begin{aligned}
-2 X_{1}+3 X_{2} & \leq 9 \\
X_{1}-5 X_{2} & \geq-20 \\
X_{1}, X_{2} & \geq 0
\end{aligned}
$$

The above problem has
(A) unbounded solution
(B) infeasible solution
(C) alternative optimum solution
(D) degenerate solution

Solution: Maximum $Z=3 x_{1}+2 x_{2}$
Subject to $-2 x_{1}+3 x_{2} \leq 9$

$$
\begin{aligned}
x_{1}-5 x_{2} & \geq-20 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

the constraints are,

$$
\begin{align*}
& -2 x_{1}+3 x_{2} \leq 9 \tag{1}\\
& -x_{1}+5 x_{2} \leq 20 \tag{2}
\end{align*}
$$

From Eq. (1), $\frac{x_{1}}{-4.5}+\frac{x_{2}}{3} \leq 1$

From Eq. (2) $\frac{x_{1}}{-20}+\frac{x_{2}}{4} \leq 1$

The shaded region represents the solution of the given problem which is unbounded.
Hence, the correct option is (A).
Question Number: 38
Question Type: MCQ
Which of the following statements are TRUE, when the cavitation parameter $\sigma=0$?
(i) the local pressure is reduced to vapor pressure
(ii) cavitation starts
cxxx | GATE 2015 Solved Paper ME: Set - I
(iii) boiling of liquid starts
(iv) cavitation stops
(A) (i), (ii), and (iv)
(B) only (ii) and (iii)
(C) only (i) and (iii)
(D) (i), (ii), and (iii)

Solution: When cavitation parameter, $\sigma=0$, then $P \leq$ $P_{\text {vapor }}$
At this local pressure (less than or equal to vapour pressure), cavitation and boiling of liquid starts.
Hence, the correct option is (D).
Question Number: 39
Question Type: NAT
One side of a wall is maintained at 400 K and the other at 300 K . The rate of heat transfer through the wall is 1000 W and the surrounding temperature is $25^{\circ} \mathrm{C}$. Assuming no generation of heat within the wall, the irreversibility (in W) due to heat transfer through the wall is \qquad

Solution:

Irreversibility, $\quad I=T_{0}(\triangle S)_{\text {universe }}$
$\Rightarrow \quad I=T_{\mathrm{o}}\left(\triangle S_{\text {sys }}+\triangle S_{\text {surr }}\right)$
$\Rightarrow I=(25+273)\left[-\frac{1000}{400}+\frac{1000}{300}\right] \Rightarrow I=248.34 \mathrm{~W}$
Hence, the correct answer is 247 to 249 .
Question Number: 40
Question Type: MCQ
A brick wall $\left(k=0.9 \frac{W}{m \cdot K}\right)$ of thickness 0.18 m separates the warm air in a room from the cold ambient air. On a particular winter day, the outside air temperature is $-5^{\circ} \mathrm{C}$ and the room needs to be maintained at $27^{\circ} \mathrm{C}$. The heat transfer coefficient associated with outside air is $20 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}$. Neglecting the convective resistance of the air inside the room, the heat loss, in $\left(\frac{W}{m^{2}}\right)$, is
(A) 88
(B) 110
(C) 128
(D) 160

Solution:

$$
Q=\frac{\Delta T}{\frac{L}{k A}+\frac{1}{h A}}=\frac{Q}{A}=\frac{\Delta T}{\left[\frac{L}{k}+\frac{1}{h}\right]}
$$

$$
\Rightarrow \frac{Q}{A}=\frac{27-(-5)}{\left[\frac{0.18}{0.9}+\frac{1}{20}\right]}=128 \mathrm{~W} / \mathrm{m}^{2}
$$

Hence, the correct option is (C).
Question Number: 41

Question Type: NAT

A mixture of ideal gases has the following composition by mass:

N_{2}	O_{2}	CO_{2}
60%	30%	10%

If the universal gas constant is $8314 \mathrm{~J} / \mathrm{kmol}-\mathrm{K}$, the characteristic gas constant of the mixture (in $\mathrm{J} / \mathrm{kg}-\mathrm{K}$) is

Solution:

Average molar mass, $M=\frac{100}{\frac{60}{28}+\frac{30}{32}+\frac{10}{44}} s=30.233$

Characteristic gas constant, $R=\frac{R_{o}}{M}=\frac{8314}{30.233}$
$\therefore \quad R=274.99 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
Hence, the correct answer is 274 to 276.
Question Number: 42
Question Type: MCQ
For the given fluctuating fatigue load, the values of stress amplitude and stress ratio are respectively

(A) 100 MPa and 5
(B) 250 MPa and 5
(C) 100 MPa and 0.20
(D) 250 MPa and 0.20

Solution:

$$
\sigma_{\max }=250 \mathrm{MPa}, \sigma_{\min }=50 \mathrm{MPa}
$$

stress amplitude $=\frac{\sigma_{\max }-\sigma_{\min }}{2}=\frac{250-50}{2}=100 \mathrm{MPa}$

$$
\text { Stress ratio }=\frac{\sigma_{\min }}{\sigma_{\max }}=\frac{50}{250}=0.2
$$

Hence, the correct option is (C).

Question Number: 43

Question Type: MCQ
For the same material and the mass, which of the following configurations of flywheel will have maximum mass moment of inertia about the axis of rotation OO^{\prime} passing through the center of gravity.
(A) Solid cylinder
(B) Rimmed wheel

(C) Solid sphere

(D) Solid cube

Solution: Mass moment of inertia is a function of mass and the radial distance from the rotating axis. In the wheel, the mass is distributed at a greater distance than the other solids. Therefore, the mass moment of inertia of the wheel is higher.

Hence, the correct option is (B).

Question Number: 44
Question Type: MCQ

A gear train is made up of five spur gears as shown in the figure. Gear 2 is driver and gear 6 is driven member. N_{2}, N_{3}, N_{4}, N_{5}, and N_{6} represent number of teeth on gears 2, 3, 4,5 , and 6 respectively. The gear(s) which act(s) as idler(s) is/are
(A) Only 3
(B) Only 4
(C) Only 5
(D) Both 3 and 5

Solution:
The speed ratio $=\frac{N_{2}}{N_{6}}=\frac{N_{2}}{N_{3}} \times \frac{N_{3}}{N_{4}} \times \frac{N_{4}}{N_{5}} \times \frac{N_{5}}{N_{6}}$ but, N_{3}
and

$$
\begin{aligned}
& =N_{4} \\
\frac{N_{2}}{N_{3}} & =\frac{T_{3}}{T_{2}}, \frac{N_{4}}{N_{5}}=\frac{T_{5}}{T_{4}}, \frac{N_{5}}{N_{6}}=\frac{T_{6}}{T_{5}} \\
\therefore \frac{N_{2}}{N_{6}} & =\frac{T_{3}}{T_{2}} \times \frac{T_{5}}{T_{4}} \times \frac{T_{6}}{T_{5}}=\frac{T_{3} \cdot T_{6}}{T_{2} \cdot T_{4}}
\end{aligned}
$$

\therefore Gear 5 does not have any effect on the speed ratio. It is an idler.
Hence, the correct option is (C).
Question Number: 45
Question Type: MCQ
In the figure, link 2 rotates with constant angular velocity ω_{2}. A slider link 3 moves outwards with a constant relative velocity $V_{\mathrm{Q} P}$, where Q is a point on slider 3 and P is a point on link 2. The magnitude and direction of Coriolis component of acceleration is given by

Solution: The magnitude of coriolis component of acceleration $=2 v \omega=2 \omega_{2} \cdot V_{Q / p}$
Direction of the coriolis component of acceleration is derived by rotating the linear velocity vector by 90° in the sense of the angular velocity. Direction of angular velocity is clockwise, by rotating the linear velocity vector $V_{\mathrm{Q} / \mathrm{p}}$ in
the clockwise sense by 90° the direction of coriolis acceleration is obtained.
(A) $2 \omega_{2} V_{\mathrm{Q} / P}$; direction of $V_{\mathrm{Q} / \mathrm{P}}$ rotated by 90° in the direction of ω_{2}.
(B) $\omega_{2} V_{\mathrm{Q} / \mathrm{P}}$; direction of $V_{\mathrm{Q} / \mathrm{P}}$ rotated by 90° in the direction of ω_{2}.
(C) $2 \omega_{2} V_{\mathrm{Q} / \mathrm{P}}$; direction of $V_{\mathrm{Q} / \mathrm{P}}$ rotated by 90° opposite to the direction of ω_{2}.
(D) $\omega_{2} V_{\mathrm{Q} / \mathrm{P}}$; direction of $V_{\mathrm{Q} / \mathrm{P}}$ rotated by 90° opposite of ω_{2}.
Hence, the correct option is (A).
Question Number: 46
Question Type: MCQ
The strain hardening exponent n of stainless steel SS 304 with distinct yield and UTS values undergoing plastic deformation is
(A) $n<0$
(B) $n=0$
(C) $0<n<1$
(D) $n=1$

Solution: Strain hardening exponent (n) is a material constant. The value of n lies in between 0 and 1 .

0 means it's a perfectly plastic material.
1 means it's a perfectly elastic material.
Stainless steel 304 has a n value of 0.44 .
Hence, the correct option is (C).
Question Number: 47
Question Type: MCQ
In a machining operation, if the generatrix and directrix both are straight lines, the surface obtained is
(A) cylindrical
(B) helical
(C) plane
(D) surface of revolution

Solution: The generation of flat surfaces is done by traversing a straight line (Generatrix) G, in a perpendicular direction (Directrix) D as shown in the figure.

Hence, the correct option is (C).
Question Number: 48
Question Type: MCQ
In full mould (cavity-less) casting process, the pattern is made of
(A) expanded polystyrene
(B) wax
(C) epoxy
(D) plaster of Paris

Solution: Full mould process also called the lost foam process uses a pattern with the complete gates and risers. The pattern material used is expanded polystyrene (EPS).

The molten metal gasifies the pattern, progressive displacement of the pattern material takes place.
Hence, the correct option is (A).
Question Number: 49
Question Type: MCQ
In the notation $(a / b / c):(d / e / f)$ for summarizing the characteristics of queueing situation, the letters ' b ' and ' d ' stand respectively for
(A) service time distribution and queue discipline
(B) number of servers and size of calling source
(C) number of servers and queue discipline
(D) service time distribution and maximum number allowed in system.

Solution: Kendall's notation
$(a / b / c):(d / e / f)$
$a \& b$: arrival and service distributions respectively.
c : No. of service channels
d : Service discipline
e : Maximum no. of customers allowed
f : Population
Hence, the correct option is (A).
Question Number: 50

Question Type: MCQ

Couette flow is characterized by
(A) steady, incompressible, laminar flow through a straight circular pipe.
(B) fully developed turbulent flow through a straight circular pipe.
(C) steady, incompressible, laminar flow between two fixed parallel plates.
(D) steady, incompressible, laminar flow between one fixed plate and the other moving with a constant velocity.

Solution: Couette flow is characterized by steady, in compressible, laminar flow between one fixed plate and the other moving with constant velocity.
Hence, the correct option is (D).
Question Number: 51
Question Type: MCQ
The thermodynamic cycle shown in the figure (T-s diagram) indicates

(A) reversed Carnot cycle
(B) reversed Brayton cycle
(C) vapor compression cycle
(D) vapor absorption cycle

Solution:

Brayton Cycle:

Two isentropic processes and two constant pressure processes.

Anticlockwise cycle. Hence, it is a reverse Brayton cycle. Hence, the correct option is (B).

Question Number: 52

Question Type: MCQ
The ratio of momentum diffusivity (v) to thermal diffusivity (a), is called
(A) Prandtl number
(B) Nusselt number
(C) Biot number
(D) Lewis number

Solution:

Prandtl number, $P_{\mathrm{r}}=\frac{\text { Momentum diffusivity }}{\text { Thermal diffusivity }}$

$$
\Rightarrow P_{r}=\frac{\vartheta}{\propto}=\frac{\mu C_{P}}{k}
$$

Hence, the correct option is (A).

Question Number: 53

Question Type: MCQ
Saturated vapor is condensed to saturated liquid in a condenser. The heat capacity ratio if $C_{\mathrm{r}}=\frac{C_{\min }}{C_{\max }}$. The effec-
tiveness (ε) of the condenser is
(A) $\frac{1-\exp \left[-N T U\left(1+C_{\mathrm{r}}\right)\right]}{1+C_{\mathrm{r}}}$
(B) $\frac{1-\exp \left[-N T U\left(1-C_{\mathrm{r}}\right)\right]}{1-C_{\mathrm{r}} \exp \left[-N T U\left(1-C_{\mathrm{r}}\right)\right]}$
(C) $\frac{N T U}{1+N T U}$
(D) $1-\exp (-N T U)$

Solution: Throughout condenser, the hot fluid (steam) remains at constant temperature. Hence, $C_{\text {max }}$ is ∞ and $C_{\text {min }}$ is for cold fluid.

$$
\therefore \frac{C_{\min }}{C_{\max }}=0
$$

For parallel flow $\rightarrow \varepsilon=\frac{1-\exp \left[-N T U\left\{1-C_{\min } / C_{\max }\right\}\right]}{1+\left[C_{\min } / C_{\max }\right]}$
For counter flow \rightarrow

$$
\begin{aligned}
& \varepsilon=\frac{1-\exp \left[-N T U\left\{1-C_{\min } / C_{\max }\right\}\right]}{1-\left\{C_{\min } / C_{\max }\right\} \exp \left[-N T U\left\{1-C_{\min } / C_{\max }\right\}\right]} \\
& \therefore \text { For } \frac{C_{\min }}{C_{\max }}=0, \varepsilon=1-\exp (-\mathrm{NTU})
\end{aligned}
$$

Hence, the correct option is (D).
Question Number: 54
Question Type: NAT
Using a unit step size, the value of integral $\int_{1}^{2} x \ln x d x$ by
trapezoidal rule is
Solution: Here step size $=h=1, a=1, b=2$
$\therefore \quad n=\frac{b-a}{h}=\frac{2-1}{1}=1$
Let

\[

\]

By trapezoidal rule, we have

$$
\begin{aligned}
\int_{1}^{2} x \ln x d x & =\frac{h}{2}[f(1)+f(2)] \\
& =\frac{1}{2}[0+1.3863]=0.6931 .
\end{aligned}
$$

Hence, the correct answer is 0.68 to 0.70 .

Question Number: 55

Question Type: MCQ
If $P(X)=1 / 4, P(Y)=1 / 3$, and $P(X \cap Y)=1 / 12$, the value of $P(Y / X)$ is
(A) $\frac{1}{4}$
(B) $\frac{4}{25}$
(C) $\frac{1}{3}$
(D) $\frac{29}{50}$

Solution:
Given $P(X)=\frac{1}{4}, P(Y)=\frac{1}{3}$, and $P(X \cap Y)=\frac{1}{12}$
$\therefore \quad P\left(\frac{Y}{X}\right)=\frac{P(X \cap Y)}{P(X)}=\frac{\left(\frac{1}{12}\right)}{\left(\frac{1}{4}\right)}=\frac{1}{3}$.
Hence, the correct option is (C).
Question Number: 56
Question Type: NAT
The lowest Eigen value of the 2×2 matrix $\left[\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right]$ is
Solution: Let $A=\left[\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right]$
The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{array}{lr}
\Rightarrow & \left|\begin{array}{cc}
4-\lambda & 2 \\
1 & 3-\lambda
\end{array}\right|=0 \\
\Rightarrow & (4-\lambda)(3-\lambda)-2=0 \\
\Rightarrow & \lambda^{2}-7 \lambda+10=0 \\
\Rightarrow & (\lambda-2)(\lambda-5)=0 \\
\Rightarrow & \lambda=2 \text { and } \lambda=5
\end{array}
$$

The lowest eigen value of A is 2 .
Hence, the correct answer is 2.
Question Number: 57
Question Type: NAT
The value of $\lim _{x \rightarrow 0}\left(\frac{-\sin x}{2 \sin x+x \cos x}\right)$ is \qquad
Solution: We have $\lim _{x \rightarrow 0}\left(\frac{-\sin x}{2 \sin x+x \cos x}\right)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left(\frac{-\cos x}{2 \cos x+\cos x-x \sin x}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{-\cos x}{3 \cos x-x \sin x}\right)=\frac{-1}{3}=-0.33
\end{aligned}
$$

Hence, the correct answer is -0.35 to -0.30 .

Question Number: 58

Question Type: NAT
A cylindrical tank with closed ends is filled with compressed air at a pressure of 500 kPa . The inner radius of the tank is 2 m , and it has wall thickness of 10 mm . The magnitude of maximum inplane shear stress (in MPa) is

Solution:

Given: $P=500 \mathrm{kPa}, D=4 \mathrm{~m}, t=0.01 \mathrm{~m}$
Maximum inplane shear stress, $\tau_{\max }=\frac{P D}{8 t}$

$$
\Rightarrow \tau_{\max }=\frac{500 \times 4}{8 \times 0.01} \Rightarrow \tau_{\max }=25 \mathrm{MPa}
$$

Hence, the correct answer is -25 .
Question Number: 59
Question Type: MCQ
A weight of 500 N is supported by two metallic ropes as shown in the figure. The values of tensions T_{1} and T_{2} are respectively

(A) 433 N and 250 N
(B) 250 N and 433 N
(C) 353.5 N and 250 N
(D) 250 N and 353.5 N

Solution:

$$
\begin{array}{lc}
& \frac{T_{2}}{\sin 150^{\circ}}=\frac{T_{1}}{\sin 120^{\circ}}=\frac{500}{\sin 90^{\circ}} \\
\Rightarrow & T_{1}=500 \times \sin 120^{\circ} \\
\Rightarrow & T_{1}=433 \mathrm{~N} \text { and } T_{2}=500 \times \sin 150^{\circ} \\
\therefore & T_{2}=250 \mathrm{~N} \\
&
\end{array}
$$

Hence, the correct option is (A).
Question Number: 60
Question Type: MCQ
Which of the following statements are TRUE for damped vibrations?
(P) For a system having critical damping, the value of damping ratio is unity and system does not undergo a vibratory motion.
(Q) Logarithmic decrement method is used to determine the amount of damping in a physical system.
(R) In case of damping due to dry friction between moving surfaces, resisting forces of constant magnitude act opposite to the relative motion.
(S) For the case of viscous damping, drag force is directly proportional to the square of relative velocity.
(A) P and Q only
(B) P and S only
(C) P, Q, and R only
(D) Q and S only

Solution: Critical damping brings the system to the position of rest in the shortest possible time without any oscillations.
Logarithmic decrement is given by $\delta=\frac{2 \pi \xi}{\sqrt{1-\xi^{2}}}$
It depends only on damping ratio.
Frictional force is in the opposite direction of the relative motion and is given by $F=\mu R$,
where R is the resisting force.
In an viscous damping system with laminar flow, piston rod with small diameter, perfect fluid, laminar flow in the clearance and piston and cylinder being concentric the damping coefficient, is given by

$$
C=\frac{12 \mu}{\pi} \cdot \frac{A_{\mathrm{p}} l}{D_{\mathrm{m}} e^{3}}
$$

$$
\begin{aligned}
\mu & =\text { coefficient of viscosity of the fluid } \\
e & =\text { clearance } \\
l & =\text { length of piston } \\
A_{\mathrm{p}} & =\text { area of flat side of the piston }
\end{aligned}
$$

Hence, the correct option is (C).

Question Number: 61

Question Type: MCQ
A drill is positioned at point P and it has to proceed to point Q. The coordinates of point Q in the incremental system of defining position of a point in $C N C$ part program will be

(A) $(3,12)$
(B) $(5,7)$
(C) $(7,12)$
(D) $(4,7)$

Solution: The point $P(3,5)$ is considered as origin and the coordinates of point $Q(7,12)$ WRT the new origin is

$$
\begin{aligned}
& Q=(7,12)-(3,5)=([7-3],(12-5]) \\
& Q=(4,7)
\end{aligned}
$$

Hence, the correct option is (D).

Question Number: 62
Question Type: MCQ
Which two of the following joining processes are autogeneous?
(i) Diffusion welding
(ii) Electroslag welding
(iii) Tungsten inert gas welding
(iv) Friction welding
(A) (i) and (iv)
(B) (ii) and (iii)
(C) (ii) and (iv)
(D) (i) and (iii)

Solution: Autogeneous processes do not have a filler material. In tungsten inert gas welding and electroslag welding filler material is provided.

Hence, the correct option is (A).

Question Number: 63

Question Type: MCQ
Three parallel pipes connected at the two ends have flowrates Q_{1}, Q_{2}, and Q_{3}, respectively, and the corresponding frictional head losses are $h_{\mathrm{L} 1}, h_{\mathrm{L} 2}$, and $h_{\mathrm{L} 3}$ respectively. The correct expressions for total flow rate (Q) and frictional head loss across the two ends $\left(h_{\mathrm{L}}\right)$ are
(A) $Q=Q_{1}+Q_{2}+Q_{3} ; h_{\mathrm{L}}=h_{\mathrm{L} 1}+h_{\mathrm{L} 2}+h_{\mathrm{L} 3}$
(B) $Q=Q_{1}+Q_{2}+Q_{3} ; h_{\mathrm{L}}=h_{\mathrm{L} 1}=h_{\mathrm{L} 2}=h_{\mathrm{L} 3}$
(C) $Q=Q_{1}=Q_{2}=Q_{3} ; h_{\mathrm{L}}=h_{\mathrm{L} 1}+h_{\mathrm{L} 2}+h_{\mathrm{L} 3}$
(D) $Q=Q_{1}=Q_{2}=Q_{3} ; h_{\mathrm{L}}=h_{\mathrm{L} 1}=h_{\mathrm{L} 2}=h_{\mathrm{L} 3}$

Solution:

Total flow rate, $Q=Q_{1}+Q_{2}+Q_{3}$ and frictional head loss,

$$
h_{\mathrm{L}_{1}}=h_{\mathrm{L}_{2}}=h_{\mathrm{L}_{3}}=\frac{f L V^{2}}{2 y D}
$$

Hence, the correct option is (B).
Question Number: 64
Question Type: MCQ
A rigid container of volume $0.5 \mathrm{~m}^{3}$ contains 1.0 kg of water at $120^{\circ} \mathrm{C}\left(v_{\mathrm{f}}=0.00106 \mathrm{~m}^{3} / \mathrm{kg}, v_{\mathrm{g}}=0.8908 \mathrm{~m}^{3} / \mathrm{kg}\right)$. The state of water is
(A) compressed liquid
(B) saturated liquid
(C) a mixture of saturated liquid and saturated vapor
(D) superheated vapor

Solution: $V_{1}=0.5 \mathrm{~m}^{3}, m=1 \mathrm{~kg}, \theta_{\mathrm{f}}=0.00106 \mathrm{~m}^{3} / \mathrm{kg}$,

$$
\theta_{\mathrm{g}}=0.8908 \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
\begin{aligned}
& \theta_{1} & =\frac{V_{1}}{m}=\frac{0.5}{1}=\theta_{\mathrm{f}}+x \theta_{\mathrm{fg}} \\
\Rightarrow & 0.5 & =0.00106+x(0.8908-0.00106) \\
\Rightarrow & x & =0.56
\end{aligned}
$$

Since dryness fraction, $x<1$, the state of water is a mixture of saturated liquid and saturated vapor.
Hence, the correct option is (C).
Question Number: 65
Question Type: MCQ
Let ϕ be an arbitrary smooth real-valued scalar function and \vec{V} be an arbitrary smooth vector valued function in
three-dimensional space. Which one of the following is an identity?
(A) $\operatorname{Curl}(\varnothing \vec{V})=\nabla(\varnothing \operatorname{Div} \vec{V})$
(B) $\operatorname{Div} \vec{V}=0$
(C) $\operatorname{Div} \operatorname{Curl} \vec{V}=0$
(D) $\operatorname{Div}(\varnothing \vec{V})=\varnothing \operatorname{Div} \vec{V}$

Solution: For any smooth vector-valued function \bar{V}, Div curl $\bar{V}=0$.
Hence, the correct option is (C).

GATE 2015 Solved Paper ME: Mechanical Engineering Set - 2

Number of Questions: 65
Total Marks:100.0

Wrong answer for MCQ will result in negative marks, (-1/3) for 1 Mark Questions and (-2/3) for 2 Marks Questions.

General Aptitude

Number of Questions: 10

Section Marks: 15.0

Q. 1 to Q. 5 carry 1 mark each and Q. 6 to Q. 10 carry 2 marks each.

Question Number: $1 \quad$ Question Type: MCQ

In the following sentence, certain parts are underlined and marked P, Q, and R. One of the parts may contain certain error or may not be acceptable in standard written communication. Select the part containing an error. Choose D as your answer if there is no error.
The student corrected all the errors that P
the instructor marked on the answer book.
(A) $\begin{aligned} & Q \\ & P\end{aligned}$
(B) Q
(C) R
(D) No error

Solution: The sentence shows a sequence of events and, hence, it should be in the past perfect tense. The underlined section Q is incorrect. It should be 'had marked' as it helps to show an activity which was done after another activity.
Hence, the correct option is (B).
Question Number: $2 \quad$ Question Type: MCQ
Given below are two statements followed by two conclusions. Assuming these statements to be true, decide which one logically follows.

Statements:

I. All film stars are playback singers.
II. All film directors are film stars.

Conclusions:
I. All film directors are playback singers.
II. Some film stars are film directors.
(A) Only conclusion I follows.
(B) Only conclusion II follows.
(C) Neither conclusion I nor II follows.
(D) Both conclusions I and II follow.

Solution: All film starts are playback singers

All Film directors are film stars
Both the given previews are universal affirmative. Then the conclusion has to be universal affirmative or particular affirmative.

$$
\checkmark \quad \times
$$

Premises : All film stars are playback singers

All film directors are film stars

Conclusion : All film directors are playback singers

$$
\checkmark-\text { Distributed } \quad \times \text { - Not Distributed }
$$

So the above conclusion complies with all the rules. Thus, All film directors are playback singers is a valid conclusion.
Some Film stars are Film directors.
In this statement both subject and predicate are not distributed. But it satisfies the following rule as well.
If a term is distributed in the conclusion, then it should be distributed in the premise also. Thus, both conclusions follow.
Hence, the correct option is (D).
Question Number: 3
Question Type: NAT
A tiger is 50 leaps of its own behind a deer. The tiger takes 5 leaps per minute to the deer's 4 . If the tiger and the deer cover 8 meter and 5 meter per leap respectively, what distance in meters will the tiger have to run before it catches the deer?

Solution: Lengths of each leap of the tiger and the deer are 8 m and 5 m , respectively.
The tiger is 50 leaps of its own behind the deer
\therefore It is 400 m behind the deer.
Time taken for the tiger to catch the deer (T)

$$
=\frac{400}{\text { Relative speed }(R)}
$$

The tiger takes 5 leaps per minute and the deer takes 4 leaps per minute.
\therefore The speeds of the tiger and the deer are (5) (8) m per minute and 4 (5) m per minute respectively i.e. 40 m per minute and 20 m per minute respectively.
Time taken by figure to catch up with deer (in min)

$$
=\frac{400}{40-20}=20
$$

Distance that the tiger will have to run before it catches the deer $=20(40)$ i.e. 800 m
Hence, the correct answer is 800 .
Question Number: 4
Question Type: MCQ
If $a^{2}+b^{2}+c^{2}=1$, then $a b+b c+a c$ lies in the interval
(A) $[1,2 / 3]$
(B) $[-1 / 2,1]$
(C) $[-1,1 / 2]$
(D) $[2,-4]$

Solution: Given,

$$
\begin{aligned}
a^{2}+b^{2}+c^{2} & =1 \\
(a+b+c)^{2} & \geq 0 \\
a^{2}+b^{2}+c^{2}+2(a b+b c+c a) & \geq 0 \\
1+2(a b+b c+c a) & \geq 0 \\
\text { i.e., } \quad a b+b c+c a & \geq-\frac{1}{2}
\end{aligned}
$$

Also, $\quad(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \geq 0$.
$\therefore a^{2}+b^{2}+c^{2} \geq a b+b c+c a$
$a b+b c+c a$ lies in the interval $\left[\frac{-1}{2}, 1\right]$
Hence, the correct option is (B).

Question Number: 5
 Question Type: MCQ

Lamenting the gradual sidelining of the arts in school curricula, a group of prominent artists wrote to the Chief Minister last year, asking him to allocate more funds to support arts education in schools. However, no such increase has been announced in this year's Budget. The artists expressed their deep anguish at their request not being approved, but many of them remain optimistic about funding in the future.
Which of the statement(s) below is/are logically valid and can be inferred from the above statements?
(i) The artists expected funding for the arts to increase this year.
(ii) The Chief Minister was receptive to the idea of increasing funding for the arts.
(iii) The Chief Minister is a prominent artist.
(iv) Schools are giving less importance to arts education nowadays.
(A) (iii) and (iv)
(B) (i) and (iv)
(C) (i), (ii), and (iv)
(D) (i) and (iii)

Solution: From the above passage, we can infer that schools are giving less importance to arts education these days and the artists are hoping that the funding for arts will increase this year. These two points are very much clear from statements i and iv; thus choice (B) is the answer.
Hence, the correct option is (B).
Question Number: 6
Question Type: MCQ
Choose the appropriate word/phrase, out of the four options given below, to complete the following sentence:
Dhoni, as well as the other team members of Indian team,
\qquad present on the occasion.
(A) were
(B) was
(C) has
(D) have

Solution: As 'Dhoni' a singular noun is the main subject of the sentence, the verb should also be singular. This makes option (B) correct.

Hence, the correct option is (B).
Question Number: 7
Question Type: MCQ
Choose the word most similar in meaning to the given word:
Awkward
(A) Inept
(B) Graceful
(C) Suitable
(D) Dreadful

Solution: 'Awkward' means 'lacking skill', which is similar in meaning to 'inept'. 'Graceful' is the opposite of 'awkward'. 'Suitable' means 'something that is right or correct for something or for a situation'. 'Dreadful' means 'very bad or unpleasant'.
Hence, the correct option is (A).
Question Number: 8
Question Type: MCQ
What is the adverb for the given word below?
Misogynous
(A) Misogynousness
(B) Misogynity
(C) Misogynously
(D) Misogynous

Solution: The adverb of most words end in an 'sly' form. Hence, choice (C) and not choice (B) is correct.
Hence, the correct option is (C).
Question Number: 9
Question Type: MCQ
An electric bus has onboard instruments that report the total electricity consumed since the start of the trip as well as the total distance covered. During a single day of operation, the bus travels on stretches M, N, Q, and P, in that order. The cumulative distances traveled and the corresponding electricity consumption are shown in the table below:

Stretch	Cumulative distance (km)	Electricity used (kWh)
M	20	12

N	45	25
O	75	45
P	100	57

The stretch where the electricity consumption per km is minimum is
(A) M
(B) N
(C) O
(D) P

Solution: Electricity consumption per km

$$
\frac{\text { Electricity used }}{\text { Distance traveled (in km) }}
$$

The electricity consumptions per km over the stretches M, N, O, P are $\frac{12}{20}, \frac{25-12}{45-20}, \frac{45-25}{75-45}, \frac{57-45}{100-75}$ respectively i.e. $0.6,0.52,0.6,0.48$, respectively.

The stretch where the electricity consumption per km is minimum is P.
Hence, the correct option is (D).
Question Number: 10
Question Type: MCQ
Ram and Ramesh appeared in an interview for two vacancies in the same department. The probability of Ram's selection is $1 / 6$ and that of Ramesh is $1 / 8$. What is the probability that only one of them will be selected?
(A) $47 / 48$
(B) $1 / 4$
(C) 13/48
(D) $35 / 48$

Solution: P (only are of Ram and Ramesh being selected)

$$
\begin{aligned}
& =P(\text { Ram }) \times P \overline{(\text { Ramesh })}+P(\overline{\text { Ram }}) \times P(\text { Ramesh }) \\
& =\frac{1}{6} \times\left(1-\frac{1}{8}\right)+\left(1-\frac{1}{6}\right) \times \frac{1}{8}=\frac{7}{48}+\frac{5}{48}=\frac{1}{4}
\end{aligned}
$$

Hence, the correct option is (B).

Mechanical Engineering

Number of Questions: 55

Q. 11 to Q. 35 carry 1 mark each and Q. 36 to $Q .65$ carry 2 marks each.
Question Number: $11 \quad$ Question Type: MCQ
The function of interpolator in a CNC machine controller is to
(A) control spindle speed
(B) coordinate feed rates of axes
(C) control tool rapid approach speed
(D) perform miscellaneous (M) functions (tool change, coolant control, etc.)

Solution: Interpolator is a control system used for linear, circular, parabolic, and cubic interpolation in CNC machine. This tool/workpiece is made to move by making small increments between the prescribed points.
Hence, the correct option is (B).

Question Number: 12

Question Type: NAT
Consider a spatial curve in three-dimensional space given in parametric form by

$$
x(t)=\cos t, y(t)=\sin t, z(t)=\frac{2}{\pi} t, 0 \leq t \leq \frac{\pi}{2}
$$

The length of the curve is \qquad
Solution: Given curve in parametric form is $x=\cos t, y=$ $\sin t, z=\frac{2}{\pi} t$

$$
\Rightarrow \quad \frac{d x}{d t}=-\sin t, \frac{d y}{d t}=\cos t, \text { and } \frac{d z}{d t}=\frac{2}{\pi}
$$

Section marks: $\mathbf{8 5 . 0}$
The length of the curve for $0 \leq t \leq \frac{\pi}{2}$ is length

$$
\begin{aligned}
& =\int_{t=0}^{\frac{\pi}{2}} \sqrt{\left[\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}\right]} d t \\
& =\int_{0}^{\frac{\pi}{2}} \sqrt{\left[(-\sin t)^{2}+(\cos t)^{2}+\left(\frac{2}{\pi}\right)^{2}\right]} d t \\
& =\int_{0}^{\frac{\pi}{2}} \sqrt{\left[\sin ^{2} t+\cos ^{2} t+\frac{4}{\pi^{2}}\right] d t} \\
& =\left(\sqrt{\left.\left.1+\frac{4}{\pi^{2}}\right) t\right]_{0}^{\frac{\pi}{2}} \Rightarrow=\left(\sqrt{1+\frac{4}{\pi^{2}}}\right)} \frac{\pi}{2}\right. \\
& =\left[\sqrt{\frac{\pi^{2}}{4}\left(1+\frac{4}{\pi^{2}}\right) \Rightarrow=\sqrt{\left(\frac{\pi^{2}}{4}+1\right)}=1.8614 .}\right.
\end{aligned}
$$

Hence, the correct answer is 1.85 to 1.87 .
Question Number: 13
Question Type: NAT
Consider an ant crawling along the curve $(x-2)^{2}+y^{2}=4$, where x and y are in meters. The ant starts at the point $(4,0)$ and moves counter-clockwise with a speed of 1.57 meters per second. The time taken by the ant to reach the point $(2,2)$ is (in seconds) \qquad

Solution: The distance traveled by the particle in moving from $(4,0)$ to $(2,2)=A B=\frac{1}{4} \times$ circumference of the
circle

$$
=\frac{1}{4} \times 2 \pi \times 2=\pi \text { meters }
$$

Given speed of ant $=1.57$ meters $/$ second
\therefore Time taken by the ant to reach the point $B(2,2)$ from the point $A(4,0)$

$$
=\frac{\text { Distance }}{\text { Speed }}=\frac{\pi}{1.57}=\frac{3.14}{1.57}=2 \mathrm{sec} .
$$

Hence, the correct answer is 1.9 to 2.1.
Question Number: 14
Question Type: MCQ
Find the solution of $\frac{d^{2} y}{d x^{2}}=y$ which passes through the origin and the point $\left(\ln 2, \frac{3}{4}\right)$
(A) $y=\frac{1}{2} e^{x}-\mathrm{e}^{-x}$
(B) $y=\frac{1}{2}\left(e^{x}+e^{-x}\right)$
(C) $y=\frac{1}{2}\left(e^{x}-e^{-x}\right)$
(D) $y=\frac{1}{2} e^{x}+e^{-x}$

Solution: Given differential equation is

$$
\begin{align*}
\frac{d^{2} y}{d x^{2}} & =y \tag{1}\\
\Rightarrow \quad \frac{d^{2} y}{d x^{2}}-y & =0
\end{align*}
$$

The auxiliary equation of (1) is

$$
\begin{array}{rlrl}
D^{2}-1 & =0 \\
\Rightarrow & D & = \pm 1
\end{array}
$$

The general solution of Eq. (1) is

$$
\begin{equation*}
y=c_{1} e^{x}+c_{2} e^{-x} \tag{2}
\end{equation*}
$$

Given Eq. (2) passes through the origin (0,0)
i.e.,

$$
y(0)=0
$$

From Eq. (2)

$$
\begin{equation*}
c_{1}+c_{2}=0 \tag{3}
\end{equation*}
$$

Given Eq. (2) passes through the point $\left(\ln 2, \frac{3}{4}\right)$

$$
\text { i.e. } \quad y(\ln 2)=\frac{3}{4}
$$

From Eq. (2), $c_{1} e^{\ln 2}+c_{2} e^{-(\ln 2)}=\frac{3}{4}$

$$
\Rightarrow \quad 2 c_{1}+\frac{1}{2} c_{2}=\frac{3}{4}
$$

$$
\left.\Rightarrow \quad 2 c_{1}+\frac{1}{2}\left(-c_{1}\right)=\frac{3}{4} \quad \text { (From Eq. (1), } c_{2}=-c_{1}\right)
$$

$$
\Rightarrow \quad \frac{3}{2} c_{1}=\frac{3}{4}
$$

$$
\Rightarrow \quad c_{1}=\frac{1}{2}
$$

$$
\Rightarrow \quad c_{2}=-c_{1}=\frac{-1}{2}
$$

Substituting the values of c_{1} and c_{2} in Eq. (2), we get the required solution of Eq. (1) as

$$
\begin{aligned}
y & =\frac{1}{2} e^{x}+\left(\frac{-1}{2}\right) e^{-x} \\
\Rightarrow \quad y & =\frac{1}{2}\left(e^{x}-e^{-x}\right) .
\end{aligned}
$$

Hence, the correct option is (C).
Question Number: 15
Question Type: MCQ
The probability of obtaining at least two 'SIX' in throwing a fair dice 4 times is
(A) $425 / 432$
(B) $19 / 144$
(C) $13 / 144$
(D) $125 / 432$

Solution: Throwing a fair dice 4 times can be considered as a binomial experiment with
'Getting "SIX" on the dice' as success

$$
\therefore \quad p=\frac{1}{6} \text { and } q=\frac{5}{6}
$$

Probability of getting 'SIX' at least two times

$$
\begin{aligned}
& =P(X \geq 2)=1-P(X<2) \\
& =1-[P(X=0)+P(X=1)] \\
& =1-\left[{ }^{4} C_{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{4}+{ }^{4} C_{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{3}\right] \\
& =1-\frac{125}{144}=\frac{19}{144}
\end{aligned}
$$

Hence, the correct option is (B).

Question Number: 16
Question Type: MCQ
In the assembly shown below, the part dimensions are:

$$
\begin{aligned}
& L_{1}=22.0 \pm 0.01 \mathrm{~mm}, \\
& L_{2}=L_{3}=10.0 \pm 0.005 \mathrm{~mm} .
\end{aligned}
$$

Assuming the normal distribution of part dimensions, the dimension L_{4} in mm for assembly condition would be:

(A) 2.0 ± 0.008
(B) 2.0 ± 0.012
(C) 2.0 ± 0.016
(D) 2.0 ± 0.020

Solution: Basic size of $L_{4}=L_{1}-\left(L_{2}+L_{3}\right)$

$$
\begin{aligned}
& =22_{-0.01}^{+0.01}-\left(10_{-0.005}^{+0.005}+10_{-0.005}^{+0.005}\right) \\
& =22_{-0.01}^{+0.01}-\left(20_{-0.01}^{+0.01}\right)=2_{-0.01-(+0.01)}^{0.01-(-0.01)} \\
& =2_{-0.02}^{+0.02}=2^{ \pm 0.02}
\end{aligned}
$$

Hence, the correct option is (D).
Question Number: 17
Question Type: NAT
A DC welding power source has a linear voltage-current (V-I) characteristic with open circuit voltage of 80 V and a short circuit current of 300 A . For maximum arc power, the current (in Amperes) should be set as \qquad _.

Solution: $V_{0}=80 \mathrm{~V}$ and $I_{\mathrm{S}}=300 \mathrm{~A}$
$\frac{V}{V_{0}}+\frac{I}{I_{0}}=1 \quad$ (power source characteristic)

$$
\therefore \frac{V}{80}+\frac{I}{300}=1 \Rightarrow 7.5 V+2 I=600 \Rightarrow V=\frac{1}{7.5}(600-2 I)
$$

$$
P=\text { Power }=V I=\frac{1}{7.5}(600-2 \mathrm{I}) \cdot I
$$

For maximum power, $\frac{\partial P}{\partial I}=0$

$$
\frac{\partial P}{\partial I}=\frac{1}{7.5}(600-4 I)=0
$$

$\therefore I=150 \mathrm{Amps}$
Hence, the correct answer is 149 to 151 .

Question Number: 18
Question Type: MCQ
A triangular facet in a $C A D$ model has vertices: $P_{1}(0,0,0)$; $P_{2}(1,1,0)$; and $P_{3}(1,1,1)$. The area of the facet is
(A) 0.500
(B) 0.707
(C) 1.414
(D) 1.732

Solution:

$P_{1}(0,0,0)$
$P_{2}(1,1,0)$
$P_{3}(1,1,1)$
In the $\triangle^{\text {le }} P_{1}, P_{2}, P_{3}$,
$P_{1} P_{2}$ is \perp to $P_{2} P_{3}$
$\therefore \quad$ Area $=\frac{1}{2} \cdot\left(P_{1} P_{2}\right) \cdot\left(P_{2} P_{3}\right)=\frac{1}{2} \cdot \sqrt{2} \cdot 1$

$$
=\frac{1}{\sqrt{2}}=0.707
$$

Hence, the correct option is (B).
Question Number: 19
Question Type: MCQ
Following data refers to the activities of a project, where, node 1 refers to the start and node 5 refers to the end of the project.

Activity	Duration (days)
$1-2$	2
$2-3$	1
$4-3$	3
$1-4$	3
$2-5$	3
$3-5$	2
$4-5$	4

The critical path $(C P)$ in the network is
(A) 1-2-3-5
(B) 1-4-3-5
(C) 1-2-3-4-5
(D) 1-4-5

Solution:

Critical path: 1-4-3-5
Hence, the correct option is (B).
Question Number: 20
Question Type: NAT
For a canteen, the actual demand for disposable cups was 500 units in January and 600 units in February. The forecast for the month of January was 400 units. The forecast for the month of March considering smoothing coefficient as 0.75 is \qquad

Solution:

$$
\begin{aligned}
& \begin{array}{llll}
\hline \text { Demand } & \text { Jan } & \text { Feb } & \text { Mar } \\
\hline \text { Actual } & 500 & 600 &
\end{array} \\
& \text { Forecast } 400 \\
& \alpha=0.75 \\
& F_{t+1}=\alpha D_{t}+(1-\alpha) F_{t} \\
& \therefore \quad F_{\mathrm{Feb}}=0.75 \times D_{\mathrm{Jan}}+(1-0.75) F_{\mathrm{Jan}} \\
& =0.75 \times 500+0.25 \times 400 \\
& F_{\text {Feb }}=475 \\
& F_{\mathrm{Mar}}=0.75 D_{\mathrm{Feb}}+0.25 F_{\mathrm{Feb}} \\
& =0.75 \times 600+0.25 \times 475 \\
& F_{\text {Mar }}=568.75 \text { units }
\end{aligned}
$$

Hence, the correct answer is 568 to 570 .

Question Number: 21

Question Type: NAT
An orthogonal turning operation is carried out under the following conditions: rake angle $=5^{\circ}$, spindle rotational speed $=400 \mathrm{rpm}$, axial feed $=0.4 \mathrm{~m} / \mathrm{min}$, and radial depth of cut $=5 \mathrm{~mm}$. The chip thickness, t_{c}, is found to be 3 mm . The shear angle (in degrees) in this turning process is \qquad
Solution: $N=300 \mathrm{rpm}, f=0.4 \mathrm{~m} / \mathrm{min}$
Radial depth $=5 \mathrm{~mm}$, Chip thickness, $t_{\mathrm{c}}=3 \mathrm{~mm}$

$$
\alpha=\text { rake angle }=5^{\circ}
$$

In turning operation, the uncut thickness is given by

$$
t=\frac{f}{N}, f \text { in } \mathrm{mm} / \mathrm{min} \text { and } N \text { in rpm }
$$

$\therefore t=\frac{0.4 \times 1000}{400}=1 \mathrm{~mm} \quad \therefore$ Chip thickness $=\frac{t}{t_{\mathrm{c}}}=\frac{1}{3}$
Shear angle is, $\tan \varphi=\frac{r \cos \alpha}{1-r \sin \alpha}=0.342$
$\therefore \varphi=18.88^{\circ}$

Hence, the correct answer is 18.5 to 19 .
Question Number: 22
Question Type: MCQ
The solidification time of a casting is proportional to $\left(\frac{V}{A}\right)^{2}$,
where V is the volume of the casting and A is the total casting surface area losing heat. Two cubes of same material and size are cast using sand casting process. The top face of one of the cubes is completely insulated. The ratio of the solidification time for the cube with top face insulated to that of the other cube is
(A) $\frac{25}{36}$
(B) $\frac{36}{25}$
(C) 1
(D) $\frac{6}{5}$

Solution: Insulated cube: $V=a^{3}, A=5 a^{2}$
Ratio of solidification time for insulated cube to the other

$$
\begin{aligned}
& =\left(\frac{V}{A}\right)_{I}^{2}:\left(\frac{V}{A}\right)^{2}=\left(\frac{a^{3}}{5 a^{2}}\right)^{2}:\left(\frac{a^{3}}{6 a^{2}}\right)^{2} \\
& =\frac{a^{2}}{25}: \frac{a^{2}}{36}=36: 25
\end{aligned}
$$

Hence, the correct option is (B).
Question Number: 23

Question Type: NAT

In a slab rolling operation, the maximum thickness reduction $\left(\triangle h_{\max }\right)$ is given by $\triangle h_{\max }=\mu^{2} R$, where R is the radius of the roll and μ is the coefficient of friction between the roll and the sheet. If $\mu=0.1$, the maximum angle subtended by the deformation zone at the center of the roll (bite angle in degrees) is \qquad -.

Solution: $\theta=$ Angle of bite, $\mu=0.1$

$$
C B=\frac{\Delta h_{\max }}{2}=\frac{\mu^{2} R}{2}
$$

From $\triangle^{\mathrm{le}} O A C$

$$
\cos \theta=O C / O A=\frac{O B-C B}{O A}=\frac{R-\mu^{2} R / 2}{R}=\frac{2-\mu^{2}}{2}
$$

$\therefore \quad \cos \theta=0.995 \Rightarrow \theta=5.7317^{\circ}$
Hence, the correct answer is 5.6 to 5.8 .

Question Number: 24
Considering massless rigid rod and small oscillations, the natural frequency (in rad/s) of vibration of the system shown in the figure is

(A) $\sqrt{\frac{400}{1}}$
(B) $\sqrt{\frac{400}{2}}$
(C) $\sqrt{\frac{400}{3}}$
(D) $\sqrt{\frac{400}{4}}$

Solution:

Static Free-body Diagram

$\Sigma M_{\mathrm{o}}=0 \Rightarrow m g(2 r)+F_{\mathrm{s}}(r)=0$

Dynamic Free-body Diagram

$$
\Rightarrow \quad \begin{aligned}
& \Sigma M_{\mathrm{o}}= \\
\Rightarrow \quad & I(-\ddot{\theta}) \Rightarrow\left[F_{\mathrm{s}}=k(\theta r)\right] r+m g(2 r)=I(-\ddot{\theta}) \\
& F_{\mathrm{s}}(r)+k r^{2}(\theta)+m g(2 r)=I(-\ddot{\theta})
\end{aligned}
$$

From Eq. (1), $F_{\mathrm{S}}(r)+m g(2 r)=0$

$$
\therefore \quad I \ddot{\theta}+\left(k r^{2}\right) \theta=0
$$

$$
\Rightarrow \quad m(2 r)^{2} \ddot{\theta}+K r^{2} \theta=0
$$

$$
\Rightarrow \quad \ddot{\theta}+\left[\frac{k r^{2}}{m(2 r)^{2}}\right] \theta=0
$$

Comparing with equation $\ddot{x}+\omega_{n}^{2} x=0$

$$
\therefore \omega_{n}=\sqrt{\frac{k r^{2}}{m \times 4 r^{2}}}=\sqrt{\frac{400}{4}}
$$

Hence, the correct option is (D).
Question Number: 25
Question Type: MCQ

For the truss shown in the figure, the magnitude of the force in member $P R$ and the support reaction at R are respectively
(A) 122.47 kN and 50 kN
(B) 70.71 kN and 100 kN
(C) 70.71 kN and 50 kN
(D) 81.65 kN and 100 kN

Solution:

Free-body Diagram of truss

Taking moment about Q,

$$
\begin{aligned}
& & M_{\mathrm{Q}} & =\left[100 \cos 60^{\circ} \times 4\right]-\left[R_{\mathrm{R}} \times 4\right]=0 \\
\Rightarrow & & R_{\mathrm{R}} & =50 \mathrm{kN} \quad[\text { Support reaction at } R]
\end{aligned}
$$

Free-body diagram of pin at R

$$
\Sigma F_{\mathrm{y}}=0
$$

$$
\Rightarrow \quad F_{\mathrm{PR}} \times \sin 45^{\circ}=50 \Rightarrow F_{\mathrm{PR}}=70.71 \mathrm{kN}
$$

[Force in member $P R$]
Hence, the correct option is (C).
Question Number: 26
Question Type: NAT
A ball of mass 0.1 kg , initially at rest, is dropped from height of 1 m . Ball hits the ground and bounces off the ground. Upon impact with the ground, the velocity reduces by 20%. The height (in m) to which the ball will rise is

Solution: Energy at the height of

$$
1 m=m g h=1 \times 1 \times 9.81=9.81 \mathrm{~J}(\text { at } A)
$$

This energy is completely converted into kinetic energy at B.

$$
\therefore \frac{1}{2} m v^{2}=9.81 \Rightarrow V=\sqrt{2 \times 9.81}=4.43 \mathrm{~m} / \mathrm{s}
$$

20% of velocity is reduced $\Rightarrow V_{\mathrm{B}}=0.8 \times 4.43$

$$
V_{\mathrm{B}}=3.543 \mathrm{~m} / \mathrm{s}
$$

\therefore The available kinetic energy after the reduction of velocity is completely converted into potential energy at point C.

$$
\begin{array}{ll}
\therefore & m g h_{\mathrm{c}}=\frac{1}{2} m V_{B}^{2} \\
\therefore & h_{\mathrm{C}}=\frac{V_{B}^{2}}{2 g}=0.64 \mathrm{~m}
\end{array}
$$

Hence, the correct answer is 0.64 .

Question Number: 27
Question Type: MCQ
A pinion with radius r_{1}, and inertia I_{1} is driving a gear with radius r_{2} and inertia I_{2}. Torque τ_{1} is applied on pinion. The following are free-body diagrams of pinion and gear showing important forces (F_{1} and F_{2}) of interaction. Which of the following relations hold true?

(A) $F_{1} \neq F_{2} ; \tau_{1}=I_{1} \ddot{\theta}_{1} ; F_{2}=I_{2} \frac{r_{1}}{r_{2}^{2}} \ddot{\theta}_{1}$
(B) $F_{1}=F_{2} ; \tau_{1}=\left[I_{1}+I_{2}\left(\frac{r_{1}}{r_{2}}\right)^{2}\right] \ddot{\theta}_{1} ; F_{2}=I_{2} \frac{r_{1}}{r_{2}^{2}} \ddot{\theta}_{1}$
(C) $F_{1}=F_{2} ; \tau_{1}=I_{1} \ddot{\theta}_{1} ; F_{2}=I_{2} \frac{1}{r_{2}} \ddot{\theta}_{2}$
(D) $F_{1} \neq F_{2} ; \tau_{1}=\left[I_{1}+I_{2}\left(\frac{r_{1}}{r_{2}}\right)^{2}\right] \ddot{\theta}_{1} ; F_{2}=I_{2} \frac{1}{r_{2}} \ddot{\theta}_{2}$

Solution: $F_{1}=F_{2}$ [Same force will transmit from pinion to the gear]

$$
\begin{array}{cc}
& \text { Resultant torque }=I_{1} \ddot{\theta}_{1} \\
\therefore & \tau_{1}-F_{1} r_{1}=I_{1} \ddot{\theta}_{1} \\
\Rightarrow & \tau_{1}=I_{1} \ddot{\theta}_{1}+F_{1} r_{1} \Rightarrow \tau_{1}=I_{1} \ddot{\theta}_{1}+F_{2} r_{1} \tag{1}
\end{array}
$$

From law of gearing, $V_{1}=V_{2} \Rightarrow r_{1} \omega_{1}=r_{2} \omega_{2}$ or

$$
\begin{equation*}
r_{1} \dot{\theta}_{1}=r_{2} \dot{\theta}_{2} \text { or } \ddot{\theta}_{2}=\left(\frac{r_{1}}{r_{2}}\right) \ddot{\theta}_{1} \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
F_{2} r_{2} & =I_{2} \ddot{\theta}_{2} \Rightarrow F_{2}=\frac{I_{2}}{r_{2}} \ddot{\theta}_{2} \\
& \Rightarrow F_{2}=\frac{I_{2}}{r_{2}}\left(\frac{r_{1}}{r_{2}}\right) \ddot{\theta}_{1} \tag{2}
\end{align*}
$$

Putting the value of F_{2} in Eq. (1), we get

$$
\begin{aligned}
& \tau_{1}=I_{1} \ddot{\theta}_{1}+\left[\frac{I_{2}}{r_{2}}\left(\frac{r_{1}}{r_{2}}\right) \ddot{\theta}_{1}\right] r_{1} \\
\Rightarrow \quad & \tau_{1}=\left[I_{1}+I_{2}\left(\frac{r_{1}}{r_{2}}\right)^{2}\right] \ddot{\theta}_{1}
\end{aligned}
$$

and

$$
F_{2}=I_{2}\left(\frac{r_{1}}{r_{2}^{2}}\right) \ddot{\theta}_{1}
$$

Hence, the correct option is (B).

Question Number: 28

Question Type: MCQ
A mobile phone has a small motor with an eccentric mass used for vibrator mode. The location of the eccentric mass on motor with respect to center of gravity (CG) of the mobile and the rest of the dimensions of the mobile phone are shown. The mobile is kept on a flat horizontal surface.

Given in addition that the eccentric mass $=2$ grams, eccentricity $=2.19 \mathrm{~mm}$, mass of mobile $=90$ grams, $g=9.81$ $\mathrm{m} / \mathrm{s}^{2}$. Uniform speed of the motor in RPM for which the mobile will get just lifted off the ground at the end Q is approximately
(A) 3000
(B) 3500
(C) 4000
(D) 4500

Solution: Free-body diagram of mobile phone

Taking moment about P and equating to zero
$\therefore \quad M_{\mathrm{P}}=0 \Rightarrow(m g \times 0.06)-\left(m_{1} e \omega^{2}\right) \times 0.09=0$
$\Rightarrow(0.09 \times 9.81 \times 0.06)=\left(0.002 \times 0.00219 \times \omega^{2}\right) \times 0.09$
$\Rightarrow \omega=366.584 \mathrm{rad} / \mathrm{s}=\frac{2 \pi N}{60} \Rightarrow N=3500.6 \mathrm{rpm}$
Hence, the correct option is (B).
Question Number: 29
Question Type: MCQ
A machine element is subjected to the following bi-axial state of stress: $\sigma_{x}=80 \mathrm{MPa} ; \sigma_{y}=20 \mathrm{MPa} ; \tau_{x y}=40 \mathrm{MPa}$. If the shear strength of the material is 100 MPa , the factor of safety as per Tresca's maximum shear stress theory is
(A) 1.0
(B) 2.0
(C) 2.5
(D) 3.3

Solution:
Given: $\sigma_{x}=80 \mathrm{MPa}, \sigma_{y}=20 \mathrm{MPa}, \tau_{x y}=40 \mathrm{MPa}, S_{y s}=$ 100 MPa

Strength is tension, $S_{y t}=\frac{S_{y s}}{0.5}=\frac{100}{0.5}$
$\Rightarrow \quad S_{\mathrm{yt}}=200 \mathrm{MPa}$
According to Tresca's maximum shear stress theory,

$$
\left(\frac{\sigma_{1}-\sigma_{2}}{2}\right)=\frac{S_{y t}}{2(F O S)}
$$

$\sigma_{1}=$ Maximum principal stress and $\sigma_{2}=$ Minimum principal stress

$$
\begin{aligned}
& \sigma_{1,2}=\left(\frac{\sigma_{x}+\sigma_{y}}{2}\right) \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}} \\
& \Rightarrow \sigma_{1,2}=\left(\frac{80+20}{2}\right) \pm \sqrt{\left(\frac{80-20}{2}\right)^{2}+40^{2}} \\
\Rightarrow \quad & \therefore\left(\frac{\sigma_{1}=100 \mathrm{MPa}, \sigma_{2}=0}{2}\right)=\frac{200}{2(\text { FOS })} \Rightarrow \mathrm{FOS}=2
\end{aligned}
$$

Hence, the correct option is (B).
Question Number: 30
Question Type: NAT
A cantilever beam with flexural rigidity of $200 \mathrm{~N} \mathrm{~m}^{2}$ is loaded as shown in the figure. The deflection (in mm) at the tip of the beam is \qquad -.

Solution:

Deflection at $C, Y_{\mathrm{C}}=Y_{\mathrm{C} 1}+Y_{\mathrm{C} 2}$ or $Y_{\mathrm{C}}=Y_{\mathrm{B}}+Y_{\mathrm{C} 2}$
Now $\tan \theta_{\mathrm{B}}=\frac{Y_{C 2}}{0.050}\{$ From $\triangle \mathrm{PQR}\}$ or $Y_{\mathrm{C} 2}=0.050 \tan \theta_{\mathrm{B}}$
or $\quad Y_{\mathrm{C} 2}=0.050\left(\theta_{\mathrm{B}}\right)$
$\therefore \quad Y_{\mathrm{C}}=Y_{\mathrm{B}}+0.050\left(\theta_{\mathrm{B}}\right)$
where $\quad Y_{\mathrm{B}}=$ Deflection at B
$\theta_{\mathrm{B}}=$ Slope at B

$$
\begin{gathered}
Y_{\mathrm{B}}=\frac{W L^{3}}{3 E I} \text { and } \theta_{\mathrm{B}}=\frac{W L^{2}}{2 E I} \\
\therefore Y_{\mathrm{C}}=\frac{500 \times 0.05^{3}}{3 E I}+0.05 \times \frac{500 \times 0.05^{2}}{2 E I} \\
\Rightarrow Y_{\mathrm{C}}=\frac{500 \times 0.05^{3}}{200}\left[\frac{1}{3}+\frac{1}{2}\right]=2.6 \times 10^{-4} \mathrm{~m}
\end{gathered}
$$

or

$$
Y_{\mathrm{C}}=0.26 \mathrm{~mm}
$$

Hence, the correct answer is 0.24 to 0.28 .

Question Number: 31

Question Type: NAT
A precision instrument package ($m=1 \mathrm{~kg}$) needs to be mounted on a surface vibrating at 60 Hz . It is desired that only 5% of the base surface vibration amplitude be transmitted to the instrument. Assume that the isolation is designed with its natural frequency significantly lesser than 60 Hz , so that the effect of damping may be ignored. The stiffness (in N / m) of the required mounting pad is

Solution:

Given: $f=60 \mathrm{~Hz}$ or $\omega=(2 \pi \times 60) \mathrm{rad} / \mathrm{sec}$
Transmissibility, $\in=0.05$; mass, $m=1 \mathrm{~kg}$
\because No damping therefore $\xi=0$

$$
\begin{aligned}
& \text { Now } \begin{array}{c}
\in=\frac{1}{ \pm\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]} \\
\Rightarrow 0.05=\frac{1}{-\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]} \\
\Rightarrow-1+\frac{(2 \pi \times 60)^{2}}{\omega_{n}^{2}}=\frac{1}{0.05} \\
\Rightarrow \\
\Rightarrow \quad \omega_{n}^{2}=\frac{(2 \pi \times 60)^{2}}{21} \Rightarrow \omega_{n}^{2}=\frac{S}{m}=6767.73 \\
\Rightarrow
\end{array} \\
& \quad S=6767.73 \times m \\
&
\end{aligned}
$$

Hence, the correct answer is 6750 to 7150 .

Question Number: 32
Question Type: NAT
A horizontal plate has been joined to a vertical post using four rivets arranged as shown in the figure. The magnitude of the load on the worst loaded rivet (in N) is \qquad

Solution:

$$
P=400 \mathrm{~N}, e=0.5 \mathrm{~m}
$$

$$
L=L_{1}=L_{2}=L_{3}=L_{4}=0.02 / \cos 45^{\circ}=0.0283 \mathrm{~m}
$$

Primary shear force,

$$
P_{1}=P_{2}=P_{3}=P_{4}=\frac{400}{4}=100 \mathrm{~N}
$$

Secondary shear force,

$$
\begin{gathered}
P_{1}^{1}=P_{2}^{1}=P_{3}^{1}=P_{4}^{1}=\frac{P e L}{L_{1}^{2}+L_{2}^{2}+L_{3}^{2}+L_{4}^{2}} \\
\Rightarrow P_{1}^{1}=P_{2}^{1}=P_{3}^{1}=P_{4}^{1}=\frac{400 \times 0.5 \times 0.0283}{4 \times 0.0283^{2}}=1766.784 \mathrm{~N}
\end{gathered}
$$

The worst loaded rivet is 2 or 3 .
\therefore Resultant force,

$$
R=\sqrt{100^{2}+1766.784^{2}+\left(2 \times 100 \times 1766.784 \times \cos 45^{\circ}\right)}
$$

$$
\Rightarrow \quad R=1838.85 \mathrm{~N}
$$

Hence, the correct answer is 1835 to 1845.
Question Number: 33
Question Type: MCQ
For flow through a pipe of radius R, the velocity and temperature distribution are as follows: $u(r, z)=C_{1}$, and $T(r, x)=$ $C_{2}\left[1-\left(\frac{r}{R}\right)^{3}\right]$, where C_{1} and C_{2} are constants.
The bulk mean temperature is given by $T_{\mathrm{m}}=\frac{2}{U_{m} R^{2}} \int_{0}^{R} u(r, x) T(r, x) r d r$, with U_{m} being the mean velocity of flow. The value of T_{m} is
(A) $\frac{0.5 C_{2}}{U_{m}}$
(B) $0.5 C_{2}$
(C) $0.6 C_{2}$
(D) $\frac{0.6 C_{2}}{U_{m}}$

Solution:

$$
\begin{aligned}
& T_{\mathrm{m}}=\frac{2}{U_{m} R^{2}} \int_{0}^{R} C_{1} C_{2}\left[1-\left(\frac{r}{R}\right)^{3}\right] r d r \\
\Rightarrow & T_{m}=\frac{2 C_{1} C_{2}}{U_{m} R^{2}} \int_{0}^{R}\left[r-\frac{r^{4}}{R^{3}}\right] d r \\
\Rightarrow & T_{m}=\frac{2 C_{1} C_{2}}{U_{m} R^{2}}\left[\frac{r^{2}}{2}-\frac{r^{5}}{5 R^{3}}\right]_{0}^{R}=\frac{2 C_{1} C_{2}}{U_{m} R^{2}}\left[\frac{R^{2}}{2}-\frac{R^{2}}{5}\right] \\
\Rightarrow & T_{m}=\frac{0.6 C_{1} C_{2}}{U_{m}}
\end{aligned}
$$

Since $u(r, x)=C_{1}$ which is constant, therefore $U_{\mathrm{m}}=C_{1}$.

$$
\Rightarrow \quad T_{\mathrm{m}}=0.6 \mathrm{C}_{2}
$$

Hence, the correct option is (C).
Question Number: 34
Question Type: MCQ
Match the following pairs:

Equation		
		Physical interpretation
P	$\nabla \times \vec{V}=0$	I
Incompressible continuity equation		
Q	$\nabla \cdot \vec{V}=0$	II

$R \quad \frac{D \vec{V}}{D t}=0$
III Irrotational flow
$S \quad \frac{\partial \vec{V}}{\partial t}=0$
IV
Zero acceleration of fluid particle
(A) P-IV, Q-I, R-II, S-III
(B) P-IV, Q-III, R-I, S-II
(C) P-III, Q-I, R-IV, S-II
(D) P-III, Q-I, R-II, S-IV

Solution: Incompressible continuity equation is given by

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \text { or } \nabla \cdot \vec{V}=0 \text { where } V=f(u, v)
$$

$$
\text { Steady flow } \rightarrow \frac{\partial \vec{V}}{\partial t}=0
$$

Irrotational flow \rightarrow Curl $\vec{V}=0$ or $\nabla \times \vec{V}=0$
Zero acceleration of fluid $\rightarrow \frac{D \vec{V}}{D t}=0$
Hence, the correct option is (C).
Question Number: 35
Question Type: NAT
The velocity field of an incompressible flow is given by
$V=\left(a_{1} x+a_{2} y+a_{3} z\right) i+\left(b_{1} x+b_{2} y+b_{3} z\right) j+\left(c_{1} x+\right.$ $\left.c_{2} y+c_{3} z\right) k$, where $a_{1}=2$ and $c_{3}=-4$. The value of b_{2} is
\qquad
Solution: $V=\left(a_{1} x+a_{2} y+a_{3} z\right) i+\left(b_{1} x+b_{2} y+b_{3} z\right) j+\left(c_{1} x\right.$

$$
\left.+c_{2} y+c_{3} z\right) k
$$

For an incompressible flow to be possible, continuity equation is to be

$$
\begin{array}{cc}
\therefore & \nabla \cdot \vec{V}=0 \\
\text { or } & \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \\
\frac{\partial u}{\partial x}= & \frac{\partial}{\partial x}\left[a_{1} x+a_{2} y+a_{3} z\right]=a_{1}
\end{array}
$$

$$
\frac{\partial v}{\partial y}=\frac{\partial}{\partial y}\left[b_{1} x+b_{2} y+b_{3} z\right]=b_{2} \text { and }
$$

$$
\begin{array}{cc}
& \frac{\partial w}{\partial z}=\frac{\partial}{\partial z}\left[c_{1} x+c_{2} y+c_{3} z\right]=c_{3} \\
\therefore & a_{1}+b_{2}+c_{3}=0 \Rightarrow 2+b_{2}-4=0 \\
\Rightarrow & b_{2}=2
\end{array}
$$

Hence, the correct answer is 1.9 to 2.1 .

Question Number: 36

Question Type: MCQ
A 10 mm diameter electrical conductor is covered by an insulation of 2 mm thickness. The conductivity of the insulation is $0.08 \mathrm{~W} / \mathrm{m}-\mathrm{K}$ and the convection coefficient at the insulation surface is $10 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$. Addition of further insulation of the same material will
(A) increase heat loss continuously
(B) decrease heat loss continuously
(C) increase heat loss to maximum and then decrease heat loss
(D) decrease heat loss to maximum and then increase heat loss

Solution: Critical radius, $r_{\mathrm{c}}=\frac{k}{h}=\frac{0.08}{10}=0.008 \mathrm{~m}$

\[

\]

\therefore Addition of further insulation increases the critical radius and increases heat loss to a maximum and then decreases heat loss.
Hence, the correct option is (C).
Question Number: 37
Question Type: NAT
Temperature of nitrogen in a vessel of volume $2 \mathrm{~m}^{3}$ is 288 K . A U-tube manometer connected to the vessel shows a reading of 70 cm of mercury (level higher in the end open to atmosphere). The universal gas constant is $8314 \mathrm{~J} / \mathrm{kmol}-\mathrm{K}$, atmospheric pressure is 1.01325 bar, acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$, and density of mercury is $13,600 \mathrm{~kg} / \mathrm{m}^{3}$. The mass of nitrogen (in kg) in the vessel is

Solution:

Given: $V=2 \mathrm{~m}^{3}, T=288 \mathrm{~K}$
Gauge pressure, $P_{\mathrm{g}}=70 \mathrm{~cm}$ of mercury or
$P_{\mathrm{g}}=(13.6 \times 0.70 \times 9.81) \mathrm{kPa}$
$\Rightarrow \quad P_{\mathrm{g}}=93.3912 \mathrm{kPa}$
Absolute pressure $P=(93.3912+101.325) \mathrm{kPa}$
$\Rightarrow \quad P=194.71 \mathrm{kPa}$
Characteristic gas constant, $R=\frac{R_{o}}{\text { Molecular weight }}$

$$
\begin{gathered}
\Rightarrow R=\frac{8.314}{28} \Rightarrow R=0.29693 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \\
P V=m R T \Rightarrow(194.71 \times 2)=(m \times 0.29693 \times 288) \\
\Rightarrow \quad m=4.554 \mathrm{~kg}
\end{gathered}
$$

Hence, the correct answer is 4.4 to 4.6 .
Question Number: 38
Question Type: NAT
Air $\left(\rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}\right.$ and kinematic viscosity, $\delta=2 \times 10^{-5}$ $\mathrm{m}^{2} / \mathrm{s}$) with a velocity of $2 \mathrm{~m} / \mathrm{s}$ flows over the top surface of a flat plate of length 2.5 m . If the average value of friction coefficient is $C_{f}=\frac{1.328}{\sqrt{\mathrm{Re}_{x}}}$, the total drag force (in N) per unit width of the plate is \qquad
Solution: Reynold number, $R_{\mathrm{ex}}=\frac{\rho U_{\infty} x}{\mu}=\frac{U_{\infty} x}{\vartheta}$

$$
\Rightarrow\left(R_{\mathrm{ex}}\right)_{x=2.5 \mathrm{~m}}=\frac{2 \times 2.5}{2 \times 10^{-5}}=2.5 \times 10^{5}
$$

$$
\therefore C_{\mathrm{f}}=\frac{1.328}{\sqrt{2 \times 10^{5}}} \Rightarrow C_{\mathrm{f}}=2.656 \times 10^{-3}
$$

$$
C_{\mathrm{f}}=\frac{F_{\mathrm{D}}}{\frac{1}{2} \rho A U_{\infty}^{2}} \Rightarrow F_{\mathrm{D}}=C_{\mathrm{f}} \times \frac{1}{2} \times \rho \times L \times b \times U_{\infty}^{2}
$$

$$
\Rightarrow \quad F_{\mathrm{D}}=2.656 \times 10^{-3} \times \frac{1}{2} \times 1.2 \times 2.5 \times 1 \times 2^{2}
$$

$\Rightarrow \quad F_{\mathrm{D}}=0.015936 \mathrm{~N}$
Hence, the correct answer is 0.0158 to 0.0162 .
Question Number: 39
Question Type: NAT
Water ($\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$) flows through a venturimeter with inlet diameter 80 mm and throat diameter 40 mm . The inlet and throat guage pressures are measured to be 400 kPa and 130 kPa , respectively. Assuming the venturimeter to be horizontal and neglecting friction, the inlet velocity (in m / s) is \qquad

Solution:

$$
\begin{aligned}
& \mathrm{d}_{1}=0.08 \mathrm{~m} \\
& \mathrm{P}_{1}=400 \mathrm{kPa}
\end{aligned}
$$

Continuity equation:

$$
\begin{gather*}
A_{1} V_{1}=A_{2} V_{2} \\
\therefore \frac{\pi}{4} \times 0.08^{2} \times V_{1}=\frac{\pi}{4} \times 0.04^{2} \times V_{2} \\
\Rightarrow \quad V_{2}=4 V_{1} \tag{1}
\end{gather*}
$$

Bernouli's equation:

$$
\begin{gathered}
\frac{P_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}=\frac{P_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g} \\
\Rightarrow\left[\frac{P_{1}-P_{2}}{\rho g}\right] \times 2 g=V_{2}^{2}-V_{1}^{2} \\
\therefore\left[\frac{400-130}{9.81}\right] \times 2 \times 9.81=\left(4 V_{1}\right)^{2}-V_{1}^{2} \\
\Rightarrow \quad V_{1}=6 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Hence, the correct answer is 6 .
Question Number: 40
Question Type: NAT
A well-insulated rigid container of volume $1 \mathrm{~m}^{3}$ contains 1.0 kg of an ideal gas $\left[C_{\mathrm{p}}=1000 \mathrm{~J} /(\mathrm{kg} . \mathrm{K})\right.$ and $C_{\mathrm{v}}=800$ $\mathrm{J} /(\mathrm{kg} . \mathrm{K})$] at a pressure of $10^{5} \mathrm{~Pa}$. A stirrer is rotated at constant rpm in the container for 1000 rotations and the applied torque is $100 \mathrm{~N}-\mathrm{m}$. The final temperature of the gas (in K) is \qquad
Solution: $\delta Q=0$
[Insulated]

$$
\delta W=-(2 \pi \times 1000 \times 100)=628.318 \mathrm{~kJ}
$$

$1^{\text {st }}$ law of thermodynamics

$$
\delta Q=\delta W+\mathrm{dU}
$$

$$
\Rightarrow \quad 0=-628.318+\mathrm{dU}
$$

$$
\Rightarrow \quad \mathrm{dU}=628.318 \mathrm{~kJ}
$$

For ideal gas,

$$
u=f(T)
$$

$$
\therefore \quad m C_{\mathrm{v}}\left(T_{2}-T\right)=628.318
$$

$$
P_{1} V_{1}=m R T_{1} \Rightarrow T_{1}=\frac{P_{1} V_{1}}{m R} \Rightarrow T_{1}=\frac{100 \times 1}{1 \times\left(C_{P}-C_{V}\right)}
$$

$$
\begin{array}{cc}
& \Rightarrow T_{1}=\frac{100}{0.2}=500 \mathrm{~K} \\
\therefore & 1 \times 0.8 \times\left(T_{2}-500\right)=628.318 \\
\Rightarrow & T_{2}=1285.4 \mathrm{~K}
\end{array}
$$

Hence, the correct answer is 1283.4 to 1287.4.
Question Number: 41
Question Type: NAT
Steam enters a well insulated turbine and expands isentropically throughout. At an intermediate pressure, 20 percent of the mass is extracted for process heating and the remaining steam expands isentropically to 9 kPa .
Inlet to turbine: $P=14 \mathrm{MPa}, T=560^{\circ} \mathrm{C}, h=3486 \mathrm{~kJ} / \mathrm{kg}$, $s=6.6 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})$
Intermediate stage: $h=2776 \mathrm{~kJ} / \mathrm{kg}$
Exit of turbine: $P=9 \mathrm{kPa}, h_{\mathrm{f}}=174 \mathrm{~kJ} / \mathrm{kg}, h_{\mathrm{g}}=2574$ $\mathrm{kJ} / \mathrm{kg}, s_{\mathrm{f}}=0.6 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K}), s_{\mathrm{g}}=8.1 \mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{K})$
If the flow rate of steam entering the turbine is $100 \mathrm{~kg} / \mathrm{s}$, then the work output (in MW) is \qquad —.

Solution:

Work output, $W=\dot{m}_{1}\left(h_{1}-h_{2}\right)+\dot{m}_{2}\left(h_{2}-h_{3}\right)$
$\Rightarrow W=100(3486-2776)+80\left(2776-h_{3}\right)$

$$
\begin{array}{ll}
\text { Now } & S_{1}=S_{2}=S_{3}=6.6=\left[S_{\mathrm{f}}+x_{3} S_{\mathrm{fg}}\right]_{9 \mathrm{kPa}} \\
\Rightarrow & 6.6=0.6+x_{3}(8.1-0.6) \\
\Rightarrow & x_{3}=0.8 \\
\therefore & h_{3}=\left[h_{\mathrm{f}}+x_{3} h_{\mathrm{fg}}\right]_{9 \mathrm{kpa}}=174+0.8(2574-174) \\
\Rightarrow & h_{3}=2094 \mathrm{~kJ} / \mathrm{kg} \\
\therefore & W=100(3486-2776)+80(2776-2094) \\
\Rightarrow & W
\end{array}
$$

Hence, the correct answer is 123.56 to 127.56 .
Question Number: 42
Question Type: MCQ
If any two columns of a determinant $P=\left|\begin{array}{lll}4 & 7 & 8 \\ 3 & 1 & 5 \\ 9 & 6 & 2\end{array}\right|$ are interchanged, which one of the following statements regarding the value of the determinant is CORRECT?
(A) Absolute value remains unchanged but sign will change.
(B) Both absolute value and sign will change.
(C) Absolute value will change but sign will not change.
(D) Both absolute value and sign will remain unchanged.

Solution: If any two columns of a determinant $P=$ $\left|\begin{array}{lll}4 & 7 & 8 \\ 3 & 1 & 5 \\ 9 & 6 & 2\end{array}\right|$ are interchanged, then absolute value remains the same but sign will change.

Hence, the correct option is (A).
Question Number: 43
Question Type: MCQ
Among the four normal distributions with probability density functions as shown below, which one has the lowest variance?

(A) I
(B) II
(C) III
(D) IV

Solution: As the total area above x-axis under any normal curve is equal to 1 , a normal curve with highest peak will have less variance
\therefore The normal curve IV has the lowest variance.
Hence, the correct option is (D).
Question Number: 44
Question Type: NAT
Simpson's $\frac{1}{3}$-rule is used to integrate the function $f(x)=$ $\frac{3}{5} x^{2}+\frac{9}{5}$ between $x=0$ and $x=1$ using the least number of equal sub-intervals. The value of the integral is \qquad $-$
Solution: Given function is $f(x)=\frac{3}{5} x^{2}+\frac{9}{5}$
The number of intervals in Simpson's $\frac{1}{3}$-rule has to be
even. even.
The least number of intervals $=n=2$
Here $a=0$ and $b=1$

$$
\Rightarrow \quad h=\frac{b-a}{n}=\frac{1-0}{2}=\frac{1}{2}
$$

$$
\begin{array}{llll}
X=x_{\mathrm{i}} & 0 & \frac{1}{2} & 1 \\
Y_{\mathrm{i}} & =f\left(x_{\mathrm{i}}\right) & \frac{9}{5} & \frac{39}{20} \\
\hline
\end{array}
$$

By Simpson's $\frac{1}{3}$-rule, we have

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1}\left(\frac{3}{5} x^{2}+\frac{9}{5}\right) d x=\frac{h}{3}\left[\left(y_{0}+y_{2}\right)+4 y_{1}\right]
$$

$$
\begin{aligned}
& =\frac{\left(\frac{1}{2}\right)}{3}\left[\left(\frac{9}{5}+\frac{12}{5}\right)+4 \times \frac{39}{20}\right] \\
& =\frac{1}{6}\left[\frac{21}{5}+\frac{39}{5}\right]=2
\end{aligned}
$$

Hence, the correct answer is 2 .
Question Number: 45
Question Type: MCQ
The value of $\lim _{x \rightarrow 0} \frac{1-\cos \left(x^{2}\right)}{2 x^{4}}$ is
(A) 0
(B) $\frac{1}{2}$
(C) $\frac{1}{4}$
(D) undefined

Solution:

$$
\text { We have } \begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos \left(x^{2}\right)}{2 x^{4}} & =\lim _{x \rightarrow 0} \frac{2 \sin ^{2}\left(\frac{x^{2}}{2}\right)}{2 x^{4}} \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2}\left(\frac{x^{2}}{2}\right)}{2^{2}\left(\frac{x^{2}}{2}\right)^{2}} \\
& =\lim _{x \rightarrow 0} \frac{1}{4}\left(\frac{\sin \left(\frac{x^{2}}{2}\right)}{\left(\frac{x^{2}}{2}\right)}\right)^{2} \\
& =\frac{1}{4}\left[\lim _{x \rightarrow 0} \frac{\sin \left(\frac{x^{2}}{2}\right)}{\left(\frac{x^{2}}{2}\right)}\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}\left[\lim _{\frac{x^{2}}{2} \rightarrow 0} \frac{\sin \left(\frac{x^{2}}{2}\right)}{\left(\frac{x^{2}}{2}\right)}\right]^{2} \\
& =\frac{1}{4} \times 1\left(\because \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1\right)=\frac{1}{4} .
\end{aligned}
$$

Hence, the correct option is (C).
Question Number: 46
Question Type: MCQ
Given two complex numbers $z_{1}=5+(5 \sqrt{3}) i$ and $z_{2}=$ $\frac{2}{\sqrt{3}}+2 i$, the argument of $\frac{z_{1}}{z_{2}}$ in degrees is
(A) 0
(B) 30
(C) 60
(D) 90

Solution: Given $Z_{1}=5+(5 \sqrt{3}) i$ and $Z_{2}=\frac{2}{\sqrt{3}}+2 i$
We know that the argument of $\frac{Z_{1}}{Z_{2}}$

$$
\begin{equation*}
=\arg \left(\frac{Z_{1}}{Z_{2}}\right)=\arg \left(Z_{1}\right)-\arg \left(Z_{2}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{aligned}
\arg \left(Z_{1}\right) & =\arg (5+(5 \sqrt{3}) i)=\tan ^{-1}\left(\frac{5 \sqrt{3}}{5}\right) \\
& =\tan ^{-1}(\sqrt{3})=60^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\arg \left(Z_{2}\right) & =\arg \left(\frac{2}{\sqrt{3}}+2 i\right)=\tan ^{-1}\left(\frac{\frac{2}{1}}{\left(\frac{2}{\sqrt{3}}\right)}\right) \\
& =\tan ^{-1}(\sqrt{3})=60^{\circ}
\end{aligned}
$$

From Eq. (1), arg $\left(\frac{Z_{1}}{Z_{2}}\right)=60^{\circ}-60^{\circ}=0$.
Hence, the correct option is (A).

Question Number: 47

Question Type: MCQ
Consider fully developed flow in a circular pipe with negligible entrance length effects. Assuming the mass flow rate, density and friction factor to be constant, if the length of the pipe is doubled and the diameter is halved, the head loss due to friction will increase by a factor of
(A) 4
(B) 16
(C) 32
(D) 64

Solution: Head loss due to friction, $h_{\mathrm{f}}=\frac{f L V^{2}}{2 g D}$
\dot{m}, ρ, f are constant

$$
\begin{aligned}
\text { Now } \dot{m}=\rho A V \Rightarrow V & =\frac{\dot{m}}{\rho A}=\frac{\dot{m} \times 4}{\rho \pi D^{2}} \\
\therefore h_{\mathrm{f}} & =\frac{f L}{2 g D} \times\left(\frac{\dot{m} \times 4}{\rho \pi D^{2}}\right)^{2} \\
& \Rightarrow h_{\mathrm{f}}=\frac{16 f L \dot{m}^{2}}{2 g \rho^{2} \pi^{2} D^{5}}
\end{aligned}
$$

In the above equation, all terms are constant except D and L.

$$
\Rightarrow \quad h_{\mathrm{f}} \propto \frac{L}{D^{5}}
$$

When D is halved and L is doubled, then

$$
\Rightarrow \quad h_{\mathrm{f}} \propto \frac{(2 L)}{\left(\frac{D}{2}\right)^{5}}=\frac{64 L}{D^{5}}
$$

\therefore Head loss will increase by a factor of 64 .
Hence, the correct option is (D).

Question Number: 48

Question Type: MCQ

The Blausius equation related to boundary layer theory is a
(A) third-order linear partial differential equation
(B) third-order nonlinear partial differential equation
(C) second-order nonlinear ordinary differential equation
(D) third-order nonlinear ordinary differential equation

Solution:

Blausius equation

$$
\frac{\partial \psi}{\partial y} \frac{\partial^{2} \psi}{\partial x \partial y}-\frac{\partial \psi \partial^{2} \psi}{\partial x \partial y^{2}}=v \frac{\partial^{3} \psi}{\partial y^{3}}
$$

where $U_{x}=\frac{\partial \psi}{\partial y}$ and $U_{y}=-\frac{\partial \psi}{\partial x}$
The above equation is third-order nonlinear ordinary differential equation.
Hence, the correct option is (D).
Question Number: 49
Question Type: MCQ
For flow of viscous fluid over a flat plate, if the fluid temperature is the same as the plate temperature, the thermal boundary layer is
(A) thinner than the velocity boundary layer
(B) thicker than the velocity boundary layer
(C) of the same thickness as the velocity boundary layer
(D) not formed at all

Solution:

If the fluid temperature is the same as the plate temperature, then $T_{\mathrm{S}}=T_{\infty}$ and hence no temperature gradient will occur. Therefore, thermal boundary layer will not be formed at all.

Hence, the correct option is (D).
Question Number: 50
Question Type: MCQ
For an ideal gas with constant values of specific heats, for calculation of the specific enthalpy,
(A) it is sufficient to know only the temperature
(B) both temperature and pressure are required to be known
(C) both temperature and volume are required to be known
(D) both temperature and mass are required to be known

Solution: For ideal gas, enthalpy is the function of temperature.

$$
h=f(T)
$$

Hence for calculation of specific enthalpy, it is sufficient to know only the temperature.
Hence, the correct option is (A).
Question Number: 51
Question Type: NAT
A Carnot engine (CE-1) works between two temperature reservoirs A and B, where $T_{\mathrm{A}}=900 \mathrm{~K}$ and $T_{\mathrm{B}}=500 \mathrm{~K}$. A second Carnot engine (CE-2) works between temperature reservoirs B and C, where $T_{\mathrm{C}}=300 \mathrm{~K}$. In each cycle CE-1 and CE-2, all the heat rejected by CE-1 to reservoir B is used by CE-2. For one cycle of operation, if the net Q absorbed by CE-1 from reservoir A is 150 MJ , the net heat rejected to reservoir C by CE-2 (in MJ) is \qquad -.

Solution:

For CE_{1}

$$
\begin{gathered}
\frac{Q_{1}}{T_{\mathrm{A}}}=\frac{Q_{2}}{T_{\mathrm{B}}} \\
\therefore Q_{2}=\frac{150 \times 500}{900}=83.34 \mathrm{MJ}
\end{gathered}
$$

For CE_{2}

$$
\begin{gathered}
\frac{Q_{2}}{T_{\mathrm{B}}}=\frac{Q_{3}}{T_{\mathrm{C}}} \\
\therefore Q_{3}=\frac{83.34 \times 300}{500}=50 \mathrm{MJ}
\end{gathered}
$$

Hence, the correct answer is 50 .
Question Number: 52
Question Type: NAT
Air enters a diesel engine with a density of $1.0 \mathrm{~kg} / \mathrm{m}^{3}$. The compression ratio is 21 . At steady state, the air intake is $30 \times 10^{-3} \mathrm{~kg} / \mathrm{s}$ and the network output is 15 kW . The mean effective pressure (in kPa) is \qquad

Solution:

Given: $\rho_{\text {air }}=1.0 \mathrm{~kg} / \mathrm{m}^{3}$

$$
r=\frac{V_{1}}{V_{2}}=21 \Rightarrow V_{2}=\frac{V_{1}}{21}
$$

$$
\dot{m}_{\text {air }}=30 \times 10^{-3} \mathrm{~kg} / \mathrm{s}
$$

$$
W_{\mathrm{net}}=15 \mathrm{~kW}
$$

Now

$$
V_{1}=\frac{\dot{m}_{\mathrm{air}}}{\rho_{\mathrm{air}}}=\frac{30 \times 10^{-3}}{1.0}=0.03 \mathrm{~m}^{3} / \mathrm{s}
$$

Mean effective pressure, $p_{\mathrm{m}}=\frac{W_{\text {net }}}{\text { Swept volume }}$
or

$$
\begin{aligned}
& p_{\mathrm{m}}=\frac{W_{\text {net }}}{\left(V_{1}-V_{2}\right)}=\frac{W_{\text {net }}}{V_{1}-\frac{V_{1}}{21}} \\
& \Rightarrow p_{m}=\frac{21 \times W_{\text {net }}}{20 V_{1}}=\frac{21 \times 15}{20 \times 0.03}
\end{aligned}
$$

$$
\Rightarrow \quad p_{\mathrm{m}}=525 \mathrm{kPa}
$$

Hence, the correct answer is 525 .
Question Number: 53
Question Type: NAT
A stream of moist air (mass flow rate $=10.1 \mathrm{~kg} / \mathrm{s}$) with humidity ratio of $0.01 \frac{\mathrm{~kg}}{\mathrm{kgdry} \text { air }}$ mixes with a second stream of superheated water vapor flowing at $0.1 \mathrm{~kg} / \mathrm{s}$. Assuming proper and uniform mixing with no condensation, the humidity ratio of the final stream $\left(\right.$ in $\left.\frac{\mathrm{kg}}{\mathrm{kg} \text { dry air }}\right)$ is \qquad
Solution: $m_{1} \omega_{1}+m_{2} \omega_{2}=m_{3} \omega_{3}$

$$
\begin{array}{lc}
\Rightarrow & (10.1 \times 0.01)+(0.1 \times 1)=(10.1+0.1) \times \omega_{3} \\
\Rightarrow & \omega_{3}=0.0197 \mathrm{~kg} / \mathrm{kg} \text { dry air } \\
\text { or } & \omega_{3} \sim 0.02 \mathrm{~kg} / \mathrm{kg} \text { dry air }
\end{array}
$$

Hence, the correct answer is 0.02 .

Question Number: 54

Question Type: NAT
A wheel of radius r rolls without slipping on a horizontal surface shown below. If the velocity of point P is $10 \mathrm{~m} / \mathrm{s}$ in the horizontal direction, the magnitude of velocity of point $Q(\mathrm{in} \mathrm{m} / \mathrm{s})$ is \qquad

Solution:

I is the instantaneous center and about I, the wheel is rolling without slipping.

$$
\begin{gathered}
V_{\mathrm{P}}=\omega r \Rightarrow 10=\omega r \Rightarrow \omega=\frac{10}{r} \\
\text { Velocity of } Q, V_{\mathrm{Q}}=\omega(2 r)=\frac{10}{r} \times 2 r \\
\Rightarrow \quad V_{\mathrm{Q}}=20 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Hence, the correct answer is 20 .
Question Number: 55
Question Type: MCQ
Consider a slider crank mechanism with non-zero masses and inertia. A constant torque τ is applied on the crank as shown in the figure. Which of the following plots best resembles variation of crank angle, θ versus time?

Solution: Hence, the correct option is (D).
Question Number: 56
Question Type: NAT
Consider a stepped shaft subjected to a twisting moment applied at B as shown in the figure. Assume shear modulus, $G=77 \mathrm{GPa}$. The angle of twist at C (in degrees) is \qquad

Solution: Angle of twist at $B=$ Angle of twist at C

$$
\begin{aligned}
(\theta)_{\mathrm{B}} & =\frac{T L}{G J}=\frac{10 \times 0.5}{77 \times 10^{9} \times \frac{\pi}{32} \times 0.02^{4}} \\
\Rightarrow \quad \theta_{\mathrm{B}} & =4.1339 \times 10^{-3} \text { radians }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \theta_{\mathrm{B}}=4.1339 \times 10^{-3} \times \frac{180}{\pi} \text { degrees } \\
& \text { or }
\end{aligned} \quad \theta_{\mathrm{B}}=\theta_{\mathrm{C}}=0.2368 \text { degrees } . ~ \$
$$

Hence, the correct answer is 0.22 to 0.25 .
Question Number: 57
Question Type: NAT
Two identical trusses support a load of 100 N as shown in the figure. The length of each truss is 1.0 m ; cross-sectional area is $200 \mathrm{~mm}^{2}$, Young's modulus $E=200 \mathrm{GPa}$. The force in the truss $A B($ in N$)$ is \qquad

Solution:

$$
\begin{array}{lr}
\Sigma F_{\mathrm{x}}=0 \Rightarrow T_{\mathrm{AB}} \cos 30^{\circ}=T_{\mathrm{BC}} \cos 30^{\circ} \\
\Rightarrow & T_{\mathrm{AB}}=T_{\mathrm{BC}} \\
& \Sigma F_{\mathrm{y}}=0 \Rightarrow T_{\mathrm{AB}} \cos 30^{\circ}+T_{\mathrm{BC}} \cos 30^{\circ}=100 \mathrm{~N} \\
\Rightarrow & T_{\mathrm{AB}} \cos 30^{\circ}+T_{\mathrm{AB}} \cos 30^{\circ}=100 \mathrm{~N} \\
\Rightarrow & 2 T_{\mathrm{AB}} \cos 30^{\circ}=100 \mathrm{~N} \\
\Rightarrow & T_{\mathrm{AB}}=100 \mathrm{~N}
\end{array}
$$

Hence, the correct answer is 100 .

Question Number: 58

Question Type: NAT
Consider a steel (Young's modulus $E=200 \mathrm{GPa}$) column hinged on both sides. Its height is 1.0 m and cross-section is $10 \mathrm{~mm} \times 20 \mathrm{~mm}$. The lowest Euler critical buckling load (in N) is \qquad -.
Solution: Lowers Euler critical buckling load, $P_{\text {cr }}$

$$
P_{\mathrm{cr}}=\frac{\pi^{2} E I_{\min }}{L^{2}}
$$

$$
I_{X X}=\frac{0.02 \times 0.01^{3}}{12} \text { and } I_{Y Y}=\frac{0.01 \times 0.02^{3}}{12}
$$

$$
\begin{aligned}
& I_{\min }=I_{X X}=\frac{0.02 \times 0.01^{3}}{12}=2 \times 10^{-8} \mathrm{~m}^{4} \\
& \therefore P_{\mathrm{cr}}= \\
&=\frac{\pi^{2} \times 200 \times 10^{9} \times 2 \times 10^{-8}}{12}=3289.87 \mathrm{~N}
\end{aligned}
$$

Hence, the correct answer is 3285 to 3295 .
Question Number: 59
Question Type: NAT
A swimmer can swim 10 km in 2 hours when swimming along the flow of a river. While swimming against the flow, she takes 5 hours for the same distance. Her speed in still water (in km / h) is \qquad
Solution: When swimming along the flow of water $\left(V_{\mathrm{f}}\right)$ the relative velocity of the swimmer is

$$
\begin{aligned}
& =V+V_{\mathrm{f}} \mathrm{~km} / \mathrm{hr} \\
V & =\text { Velocity of swimmer }
\end{aligned}
$$

When swimming against the flow, velocity

$$
=V-V_{\mathrm{f}} \mathrm{~km} / \mathrm{hr}
$$

\therefore Time taken while swimming along the flow

$$
\begin{array}{ll}
& 2=\frac{10}{V+V_{\mathrm{f}}} \\
\Rightarrow \quad & V+V_{\mathrm{f}}=5 \tag{1}
\end{array}
$$

Time taken while swimming against the flow

$$
\begin{equation*}
5=\frac{10}{V-V_{\mathrm{f}}} \Rightarrow V-V_{\mathrm{f}}=2 \tag{2}
\end{equation*}
$$

From Eqs. (1) and (2)

$$
V=3.5 \mathrm{~m} / \mathrm{s} .
$$

Hence, the correct answer is 3.5 .
Question Number: 60
Question Type: MCQ
Which one of the following is the most conservative fatigue failure criterion?
(A) Soderberg
(B) Modified Goodman
(C) ASME Elliptic
(D) Gerber

Solution: The most conservative criterion is Soderberg criterion.

Hence, the correct option is (A).

Question Number: 61

Question Type: MCQ
Which one of the following types of stress-strain relationship best described the behavior of brittle materials, such as ceramics and thermosetting plastics ($\sigma=$ stress and $\varepsilon=$ strain)?

Solution: For Brittle materials, there will not be any indication of yielding and the failure is catastrophic which is represented by:

Hence, the correct option is (D).
Question Number: 62
Question Type: MCQ
Match the following products with preferred manufacturing processes:

Product			Process
P	Rails	1	Blow molding
Q	Engine crankshaft	2	Extrusion
R	Aluminum channels	3	Forging
S	PET water bottles	4	Rolling

(A) P-4, Q-3, R-1, S-2
(B) P-4, Q-3, R-2, S-1
(C) P-2, Q-4, R-3, S-1
(D) P-3, Q-4, R-2, S-1

Solution: Rails are manufactured using rolling because of large lengths. Engine crankshaft can be made by forging. Aluminum channels are made using extrusion. Water bottles are made by blow mounding operation.
Hence, the correct option is (B).
Question Number: 63
Question Type: MCQ
Holes of diameter $25.0_{+0.020}^{+0.040} \mathrm{~mm}$ are assembled interchangeably with the pins of diameter $25.0_{-0.008}^{+0.005} \mathrm{~mm}$. The minimum clearance in the assembly will be
(A) 0.048 mm
(B) 0.015 mm
(C) 0.005 mm
(D) 0.008 mm

Solution:

	Hole	Shaft
\min	25.02	24.992
\max	25.04	25.005

As the maximum shaft diameter is less than minimum hole diameter, the fit is a clearance fit.

$$
\begin{aligned}
\text { Minimum clearance } & =(\text { Hole })_{\min }-(\text { Shaft })_{\max } \\
& =25.02-25.005 \\
\text { Maximum } & =0.015 \mathrm{~mm}
\end{aligned}
$$

Hence, the correct option is (B).
Question Number: 64
Question Type: NAT
Under certain cutting conditions, doubling the cutting speed reduces the tool life to $\left(\frac{1}{16}\right)^{\text {th }}$ of the original. Taylor's tool life index (n) for this tool-work piece combination will be \qquad -.

Solution: Let $V_{1}=V$ and $T_{1}=T$

$$
V_{2}=2 V \quad T_{2}=\frac{T}{16}
$$

By Taylor's tool life equation

$$
\begin{gathered}
V T^{n}=C \Rightarrow V_{1} T_{1}^{n}=V_{2} T_{2}^{n} \\
V \cdot T^{n}=2 V\left(\frac{T}{16}\right)^{n} \Rightarrow 16^{n}=2 \Rightarrow 2^{4 n}=2
\end{gathered}
$$

clvi | GATE 2015 Solved Paper ME: Set - 2
$\therefore 4 n=1 \Rightarrow n=\frac{1}{4}=0.25$
Hence, the correct answer is 0.25 .
Question Number: 65
Question Type: MCQ
In a linear arc welding process, the heat input per unit length is inversely proportional to
(A) welding current
(B) welding voltage
(C) welding speed
(D) duty cycle of the power source

Solution: Heat input $Q=C V I$
$C=$ fraction of time during which arc is on $=\frac{L}{v}$
$L=$ Length of weld, $v=$ welding speed
$\therefore \frac{Q}{L}=\frac{V I}{v} \Rightarrow Q \propto \frac{1}{v}$
Hence, the correct option is (C).

GATE 2015 Solved Paper ME: Mechanical Engineering Set - 3

Number of Questions: 65

Total Marks:100.0

Wrong answer for MCQ will result in negative marks, ($-1 / 3$) for 1 Mark Questions and ($-2 / 3$) for 2 Marks Questions.

General Aptitude

Number of Questions: 10

Section Marks: 15.0

Q. 1 to Q. 5 carry 1 mark each and Q. 6 to Q. 10 carry 2 marks each.

Question Number: $1 \quad$ Question Type: MCQ

Ram and Shyam shared a secret and promised to each other that it would remain between them. Ram expressed himself in one of the following ways as given in the choices below. Identify the correct way as per standard English.
(A) It would remain between you and me.
(B) It would remain between I and you.
(C) It would remain between you and I.
(D) It would remain with me.

Solution: Choice (A) is correct as this is an objective case. The first person objective is 'me' and not 'I.'. The first person is always placed at the end and hence choice (A) is correct.

Hence, the correct option is (A).

Question Number: 2
 Question Type: MCQ

In the following question, the first and the last sentence of the passage are in order and numbered 1 and 6 . The rest of the passage is split into 4 parts and numbered as 2, 3, 4 and 5. These 4 parts are not arranged in proper order. Read the sentences and arrange them in a logical sequence to make a passage and choose the correct sequence from the given options.

1. On Diwali, the family rises early in the morning.
2. The whole family, including the young and the old enjoy doing this.
3. Children let off fireworks later in the night with their friends.
4. At sunset, the lamps are lit and the family performs various rituals.
5. Father, mother, and children visit relatives and exchange gifts and sweets.
6. Houses look so pretty with lighted lamps all around.
(A) 2, 5, 3, 4
(B) 5, 2, 4, 3
(C) 3, 5, 4, 2
(D) $4,5,2,3$

Solution: The next sentence after (1) is (5) as it explains what people (or the family members) do after waking up. Sentence (2) continues explaining sentence (5). The 'this' in (2) is what is mentioned in (5). Once the morning's description is over, the sunset's (or evening's) activities are given. Hence (4) follows next. Night follows in the end and so does the second last sentence. This makes 152436 the correct sequence.
Hence, the correct option is (B).

Question Number: 3
 Question Type: NAT

From a circular sheet of paper of radius 30 cm , a sector of 10% area is removed. If the remaining part is used to make a conical surface, then the ratio of the radius and height of the cone is \qquad
Solution: Area of the sector is 10% of the area of the circular sheet.
\therefore The central angle of the sector is 10% of 360° i.e. 36°.
The remaining part is a sector whose central angle is 324°.
The remaining part is used to make a conical surface.
\therefore Arc length of the remaining part is the circumference of the base of the cone.

Also the radius of the sector is the slant height of the cone.
Let the radius of the cone be r.

$$
\frac{324}{360}(2 \pi(30))=2 \pi r \Rightarrow r=27
$$

Slant height of the cone $=30$

$$
\text { Height of the cone }(h)=\sqrt{30^{2}-27^{2}}=3 \sqrt{19}
$$

$$
r: h=\frac{27}{3 \sqrt{19}}=\frac{9}{\sqrt{19}}
$$

Hence, the correct answer is $9: \sqrt{19}$.
Question Number: 4
Question Type: MCQ
$\log \tan 1^{\circ}+\log \tan 2^{\circ}+\ldots+\log \tan 89^{\circ}$ is \qquad
(A) 1
(B) $1 / \sqrt{2}$
(C) 0
(D) -1

Solution: $\log \tan 1^{\circ}+\log \tan 2^{\circ}+\ldots+\log \tan 89^{\circ}$

$$
\begin{aligned}
& =\log \left(\tan 1^{\circ}\right)\left(\tan 2^{\circ}\right) \ldots\left(\tan 89^{\circ}\right) \\
& =\log \left(\tan 1^{\circ}\right)\left(\tan 2^{\circ}\right) \ldots\left(\tan 45^{\circ}\right) \ldots\left(\tan 89^{\circ}\right) \\
& =\log 1\left(\because \tan \theta \times \tan (90-\theta)=1 \text { and } \tan 45^{\circ}=1\right)=0
\end{aligned}
$$

Hence, the correct option is (C).
Question Number: 5
Question Type: MCQ
Ms. X will be in Bagdogra from 01/05/2014 to 20/05/2014 and from $22 / 05 / 2014$ to $31 / 05 / 2014$. On the morning of 21/05/2014, she will reach Kochi via Mumbai.
Which one of the statements below is logically valid and can be inferred from the above sentences?
(A) Ms. X will be in Kochi for one day, only in May.
(B) Ms. X will be in Kochi for only one day in May.
(C) Ms. X will be only in Kochi for one day in May.
(D) Only Ms. X will be Kochi for one day in May.

Solution: We are given that Mr. X will be in Bagdogra from $01 / 0512014$ to $20 / 05 / 2014$ and $22 / 05 / 2014$ to 3/05/2014 and he will reach Kochi on 2/05/2014. But again on $22 / 05 / 2014 \mathrm{Mr}$. X will be in Bagdogra. This means that Mr. X will be in Kochi for only one day in May.
Hence, the correct option is (B).

Question Number: 6

Question Type: MCQ
Choose the most appropriate word from the options given below to complete the following sentence.
If the athlete had wanted to come first in the race, he several hours every day.
(A) should practice
(B) should have practiced
(C) practiced
(D) should be practiced

Solution: The sentence uses the past perfect tense to explain a situation which could have been changed for a suitable outcome. The past perfect should be followed by a 'have' as it shows the 'ifthen' clause. This makes choice (B) the correct answer.

Hence, the correct option is (B).

Question Number: 7
 Question Type: MCQ

Choose the most suitable one word substitute for the following expression:
Connotation of a road way
(A) Pertinacious
(B) Viaticum
(C) Clandestine
(D) Ravenous

Solution: 'Viaticum' is an allowance for traveling expenses. This is the only word that relates to road or way.
'Pertinacious' means a 'persevering' or a 'patient' person.
'Ravenous' means very hungry. 'Clandestine' means done in a secret place or privately. None of the choices, except (B), relate to a road or way.

Hence, the correct option is (B).
Question Number: 8
Question Type: MCQ
Choose the correct verb to fill in the blank below:
Let us
(A) introvert
(B) alternate
(C) atheist
(D) altruist

Solution: 'Alternate' means to occur by turns. The sentence requires a verb. Among the choices, only choice (B) suits the sentence as it indicates that people wanted to take turns (to do something). 'Introvert' is one who does not gel with people well and keeps to himself or herself. 'Atheist' is a person who does not believe in the existence of God. 'Altruist' is a person who is selfless. This makes only choice (B) suitable to the context.
Hence, the correct option is (B).
Question Number: 9
Question Type: MCQ
Find the missing sequence in the letter series below:
A, CD, GHI, ?, UVWXY
(A) LMN
(B) MNO
(C) MNOP
(D) NOPQ

Solution: A, CD, GHI?, UVWXY
This question is based on Letter/Alphabet series. And we are asked to find the missing element.
A (B) C D (E F) G H I (J K L) M N O P
When we compare the given questions with the series above, we can see that B, E, F, have been omitted. So alternately omitting the number of alphabets in increasing order stating from 1 is the logic. And also the number of alphabets in each element are also gradually increasing. So, the missing element has to be M N OP.
Hence, the correct option is (C).
Question Number: $10 \quad$ Question Type: MCQ
If $x>y>1$, which of the following must be true?
i. $\ln x>\ln y$
ii. $e^{x}>e^{y}$
iii. $y^{x}>x^{y}$
iv. $\cos x>\cos y$
(A) (i) and (ii)
(B) (i) and (iii)
(C) (iii) and (iv)
(D) (ii) and (iv)

Solution:
$x>y>1$
(i) For any number p greater than $1, \ln p$ increases with p ($p>0$)
$\therefore \quad$ (1) implies $\ln x>\ln y$
(ii) For any positive number p, e^{p} increases with p
$\therefore \quad e^{x}>e^{y}$
(iii) If $x=3, y=2, x^{y}>y^{X}$

If $x=4, y=3, x^{y}<y^{x}$. Hence (iii) is not true.
(iv) For $\pi / 2>x>y>1$

```
cos}x<\operatorname{cos}
```

Hence (iv) is not true.
Only (i) and (ii) must be true.
Hence, the correct option is (A).

Mechanical Engineering

Number of Questions: 55
Q. 11 to Q. 35 carry 1 mark each and Q. 36 to Q. 65 carry 2 marks each.
Question Number: 11
Question Type: MCQ
Sales data of a product is given in the following table:

Month	January	February	March	April	May
Number of units sold	10	11	16	19	25

Regarding forecast for the month of June, which one of the following statements is TRUE?
(A) Moving average will forecast a higher value compared to regression.
(B) Higher the value of order N, the greater will be the forecast value by moving average.
(C) Exponential smoothing will forecast a higher value compared to regression.
(D) Regression will forecast a higher value compared to moving average.
Solution: As the trend is increasing, regression will forecast a higher value than the moving average.
Hence, the correct option is (D).

Question Number: 12
 Question Type: MCQ

The chance of a student passing an exam is 20%. The chance of a student passing the exam and getting above 90% marks in it is 5%. GIVEN that a student passes the examination, the probability that the student gets above 90% marks is
(A) $\frac{1}{18}$
(B) $\frac{1}{4}$
(C) $\frac{2}{9}$
(D) $\frac{5}{18}$

Solution: Let A and B denote the events of a student passing an exam and a student getting above 90% marks in the exam respectively
$\therefore \quad P(A)=\frac{20}{100}=0.2, P(A \cap B)=\frac{5}{100}=0.05$
Given that a student passes the examination, the probability that the student gets above 90% marks

$$
=P\left(\frac{B}{A}\right)=\frac{P(A \cap B)}{P(A)}=\frac{0.05}{0.2}=\frac{1}{4} .
$$

Hence, the correct option is (B).
Question Number: 13 Question Type: NAT
The surface integral $\iint_{S} \frac{1}{\pi}(9 x \bar{i}-3 y \bar{j}) \cdot n d S$ over the sphere given by $x^{2}+y^{2}+z^{2}=9$ is \qquad
Solution: Let $\bar{F}=\frac{1}{\pi}(9 x \bar{i}-3 y \bar{j})$
$\Rightarrow \quad \operatorname{div}\left(\sqrt{1+\frac{4}{\pi^{2}}}\right) t^{\frac{\pi}{2}}=[9]-\frac{1}{\pi}[3]=\frac{6}{\pi}$
Now $\iint_{S} \frac{1}{\pi}(9 x \bar{i}-3 y \bar{j}) \cdot \bar{n} d s=\iint_{S} \bar{F} \cdot \bar{n} d s$
$=\iiint_{V} \operatorname{Div} \bar{F} d v$
$=\iiint_{V}\left(\frac{6}{\pi}\right) d v=\frac{6}{\pi} \iiint_{V} d v=\frac{6}{\pi} \times V$
$=\frac{6}{\pi} \times$ volume of the sphere $x^{2}+y^{2}+z^{2}=9$
$=\frac{6}{\pi} \times \frac{4}{3}\left(\pi r^{3}\right)$, where $r=3$
$=\frac{6}{\pi} \times \frac{4}{3}\left(\pi \times 3^{3}\right)=216$
Hence, the correct answer is 214 to 218 .
Question Number: 14
Question Type: MCQ
Consider the following differential equation:

$$
\frac{d y}{d t}=-5 y ; \text { initial condition: } y=2 \text { at } t=0 .
$$

The value of y at $t=3$ is
(A) $-5 e^{-10}$
(B) $2 e^{-10}$
(C) $2 e^{-15}$
(D) $-15 e^{2}$

Solution: Given differential equation is

$$
\begin{gather*}
\frac{d y}{d t}=-5 y \tag{1}\\
y=2 \text { at } t=0 \tag{2}
\end{gather*}
$$

From (1),

$$
\frac{1}{y} d \mathrm{y}=-5 d t
$$

which is in variables separable form
Integrating on both sides

$$
\begin{array}{rlrl}
& & \int \frac{1}{y} d y & =-\int 5 d t \\
\Rightarrow & \ln y & =-5 t+c \\
\Rightarrow & y & =e^{-5 t}+c \\
\Rightarrow & y & =c_{1}, e^{-5 t} \\
& \text { where } & c_{1} & =e^{c} \\
\Rightarrow & y & =2 \text { at } t=0 \\
\Rightarrow & 2 & =c_{1} e^{-5} \times 0 \Rightarrow c_{1}=2
\end{array}
$$

Substituting the value of c_{1} in Eq. (3), we have

$$
y=2 e^{-5 t}
$$

The value of y at $t=3$ is

$$
y=2 e^{-5} \times^{3} \Rightarrow y=2 e^{-15}
$$

Hence, the correct option is (C).
Question Number: 15
Question Type: NAT
The values of function $f(x)$ at 5 discrete points are given below:

x	0	0.1	0.2	0.3	0.4
$f(x)$	0	10	40	90	160

Using trapezoidal rule with step size of 0.1 , the value of $\int_{0}^{0.4} f(x) d x$ is \qquad
Solution:

x	0	0.1	0.2	0.3	0.4

$f(x)$	0	10	40	90	160

Here $h=0.1$
By trapezoidal rule, we have

$$
\begin{aligned}
\int_{0}^{0.4} f(x) d x & =\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{4}\right)+2\left(f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right)\right] \\
& =\frac{0.1}{2}[(0+160)+2(10+40+90)] \\
& =\frac{1}{20}[160+280]=22
\end{aligned}
$$

Hence, the correct answer is 21.8 to 22.2 .

Question Number: 16
Question Type: NAT
The initial velocity of an object is $40 \mathrm{~m} / \mathrm{s}$. The acceleration a of the object is given by the following expression:

$$
a=-0.1 v
$$

where v is the instantaneous velocity of the object. The velocity of the object after 3 seconds will be \qquad
Solution: $u=40 \mathrm{~m} / \mathrm{s}$ and $V=$ Final velocity

$$
a=-0.1 \mathrm{~V}
$$

We know that $a=\frac{d V}{d t}$ or $d t=\frac{d V}{a} \Rightarrow \int_{0}^{t} d t=-\int_{u}^{V} \frac{d V}{0.1 V}$

$$
\Rightarrow t=\frac{-1}{0.1}[\ln V]_{u}^{V}
$$

$$
\Rightarrow \quad-0.1 t=[\ln V-\ln u]
$$

At $t=3$ seconds

$$
\begin{aligned}
& & -(0.1 \times 3) & =[\ln V-\ln 40] \\
\Rightarrow & & V & =29.633 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Hence, the correct answer is 29.5 to 29.7 .
Question Number: 17
Question Type: MCQ
A cantilever beam $O P$ is connected to another beam $P Q$ with a pin joint as shown in the figure. A load of 10 kN is applied at the mid-point of $P Q$. The magnitude of bending moment (in $\mathrm{kN}-\mathrm{m}$) at fixed end O is

(A) 2.5
(B) 5
(C) 10
(D) 25

Solution:

$$
\begin{aligned}
& \\
& \Rightarrow \quad R_{\mathrm{P}} \times 1-10 \times 0.5=0 \\
& \Rightarrow \quad R_{\mathrm{P}}=5 \mathrm{kN}
\end{aligned}
$$

$$
R_{\mathrm{p}}=5 \mathrm{kN}
$$

Bending moment at $O, M_{\text {o }}$

$$
M_{\mathrm{o}}=5 \times 2=10 \mathrm{kN}-\mathrm{m}
$$

Hence, the correct option is (C).

Question Number: 18
 Question Type: MCQ

For the truss shown in the figure, the magnitude of the force (in kN) in the member $S R$ is

(A) 10
(B) 14.14
(C) 20
(D) 28.28

Solution:

Taking moment about $P, M_{\mathrm{p}}=0$

$$
\begin{aligned}
R_{\mathrm{a}} \times 3-(30 \times 2) & =0 \Rightarrow R_{\mathrm{Q}}=20 \mathrm{kN} \\
\Sigma F_{y} & =0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad R_{\mathrm{RT}} \sin 45^{\circ}=20 \\
& R_{\mathrm{RT}}=\frac{20}{\sin 45^{\circ}} \text { and } R_{\mathrm{RT}} \cos 45^{\circ}=R_{\mathrm{RS}} \\
& R_{\mathrm{RS}}=\frac{20}{\operatorname{cin}^{2}} \times \cos 45^{\circ}=20 \mathrm{kN}
\end{aligned}
$$

\therefore Force on member $S R, R_{\mathrm{RS}}=20 \mathrm{kN}$.
Hence, the correct option is (C).
Question Number: 19
Question Type: NAT
A cantilever beam with square cross-section of 6 mm side is subjected to a load of 2 kN normal to the top surface as shown in the figure. The Young's modulus of elasticity of the material of the beam is 210 GPa . The magnitude of slope (in radian) at Q (20 mm from the fixed end) is

Solution:

Bending moment at $O=2 \times 0.1=0.2 \mathrm{kN}-\mathrm{m}$
Bending moment at $Q=2 \times 0.08=0.16 \mathrm{kN}-\mathrm{m}$
Taking C as origin, A as reference, and denoting θ as slope.
$\therefore \theta_{\mathrm{C}}-\theta_{\mathrm{A}}=\frac{1}{E I}$ [Area of bending moment diagram between
C and $A]$
Now slope at fixed end $A, \theta_{\mathrm{A}}=0$

$$
\begin{aligned}
& \therefore \quad \theta_{\mathrm{C}}=\frac{1}{E I}[\text { Area of }\{B D E+A C D B\}] \\
& \quad \Rightarrow \theta_{C}=\frac{1 \times 10^{3}}{210 \times 10^{9} \times \frac{0.006^{4}}{12}}\left[\begin{array}{r}
\left\{\frac{1}{2} \times(0.2-0.16) \times 0.02\right\} \\
+\{0.02 \times 0.16\}
\end{array}\right]
\end{aligned}
$$

$\Rightarrow \theta_{\mathrm{C}}=0.15873$ radians.
Hence, the correct answer is 0.15 to 0.17 .

Question Number: 20

Question Type: MCQ
In a plane stress condition, the components of stress at a point are $\sigma_{x}=20 \mathrm{MPa}, \sigma_{y}=80 \mathrm{MPa}$, and $\tau_{x y}=40 \mathrm{MPa}$. The maximum shear stress (in MPa) at the point is
(A) 20
(B) 25
(C) 50
(D) 100

Solution: Given: $\sigma_{x}=20 \mathrm{MPa}, \sigma_{y}=80 \mathrm{MPa}, \tau_{x y}=40 \mathrm{MPa}$ $\tau_{\max }=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}=\sqrt{\left(\frac{20-80}{2}\right)^{2}+40^{2}}$
$\Rightarrow \tau_{\text {max }}=50 \mathrm{MPa}$.
Hence, the correct option is (C).
Question Number: 21
Question Type: NAT
In a certain slider-crank mechanism, lengths of crank and connecting rod are equal. If the crank rotates with a uniform angular speed of $14 \mathrm{rad} / \mathrm{s}$ and the crank length is 300 mm , the maximum acceleration of the slider (in $\mathrm{m} / \mathrm{s}^{2}$) is \qquad -.

Solution:

$\omega=14 \mathrm{rad} / \mathrm{s}, r=0.3 \mathrm{~m}=1, n=\frac{l}{r}=1$
Acceleration of the piston,

$$
a=r \omega^{2}\left[\cos \theta+\frac{\cos 2 \theta}{n}\right]
$$

for maximum acceleration, $\frac{d a}{d \theta}=0$.

$$
\begin{array}{ll}
\therefore & -\sin \theta-\frac{2 \sin 2 \theta}{n}=0 \\
\Rightarrow & \sin \theta+2 \sin \theta \cos \theta=0 \\
\Rightarrow & \sin \theta[1+2(\cos) \theta]=0
\end{array}
$$

\therefore When $\sin \theta=0, \theta=0^{\circ}$ and

$$
1+2 \cos \theta=0, \theta=\cos ^{-1}\left(\frac{1}{2}\right)
$$

\therefore Acceleration will be maximum when $\theta=0^{\circ}$

$$
\begin{array}{ll}
\therefore & (a)_{\text {maximum }}=0.3 \times 14^{2} \times\left[\cos 0^{\circ}+\frac{\cos 0^{\circ}}{n}\right] \\
\Rightarrow & (a)_{\text {maximum }}=0.3 \times 14^{2} \times 2 \\
\Rightarrow & (a)_{\text {maximum }}=117.6 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

Hence, the correct answer is 115 to 120 .

Question Number: 22
 Question Type: MCQ

A slider-degree-freedom spring-mass system is subjected to a sinusoidal force of 10 N amplitude and frequency ω along the axis of the spring. The stiffness of the spring is $150 \mathrm{~N} / \mathrm{m}$, damping factor is 0.2 and the undamped natural frequency is 10ω. At steady state, the amplitude of vibration (in m) is approximately
(A) 0.05
(B) 0.07
(C) 0.70
(D) 0.90

Solution: Given: $F_{0}=10 \mathrm{~N}, k=150 \mathrm{~N} / \mathrm{m}, \xi=0.2, \omega_{n}$ $=10 \omega$

$$
\begin{aligned}
& \text { Amplitude, } A=\frac{F_{o} / k}{\sqrt{\left[1-\left(\frac{\omega}{10 \omega}\right)^{2}\right]^{2}+\left(\frac{2 \xi \omega}{\omega_{n}}\right)^{2}}} \\
& \Rightarrow A=\frac{10 / 150}{\sqrt{\left[1-\left(\frac{\omega}{10 \omega}\right)^{2}\right]^{2}+\left(\frac{2 \times 0.2 \times \omega}{10 \omega}\right)^{2}}} \\
& \Rightarrow A=\frac{10 / 150}{\sqrt{\left(1-\frac{1}{100}\right)^{2}+\left(\frac{2 \times 0.2}{10}\right)^{2}}} \\
& \Rightarrow \quad A=0.067 \mathrm{~m} \text { or } A=0.07 \mathrm{~m}
\end{aligned}
$$

Hence, the correct option is (B).
Question Number: 23
Question Type: NAT
A hollow shaft of 1 m length is designed to transmit a power of 30 kW at 700 rpm . The maximum permissible
angle of twist in the shaft is 1°. The inner diameter of the shaft is 0.7 times the outer diameter. The modulus of rigidity is 80 GPa . The outside diameter (in mm) of the shaft is

Solution: Given: $L=1 \mathrm{~m}, P=30 \mathrm{~kW}, N=700 \mathrm{rpm}$, $\theta=1$

$$
\begin{array}{ll}
& =0.0174533 \text { radians, } d_{\mathrm{i}}=0.7 d_{\mathrm{o}}, G=80 \mathrm{GPa} \\
& P=\frac{2 \pi N T}{60,000} \Rightarrow T=\frac{30 \times 60,000}{2 \times \pi \times 700} \\
\Rightarrow & \quad T=409.256 \mathrm{~N}-\mathrm{m} \\
\text { Now } & \frac{T}{J}=\frac{G \theta}{L} \Rightarrow J=\frac{T L}{G \theta} \\
\Rightarrow & \therefore \frac{\pi}{32}\left[d_{\mathrm{o}}^{4}-d_{\mathrm{i}}^{4}\right]=\frac{409.256 \times 1}{80 \times 10^{9} \times 0.0174533} \\
\Rightarrow & \quad d_{\mathrm{o}}^{4}-\left(0.7 \mathrm{~d}_{\mathrm{o}}\right)^{4}=2.9856 \times 10^{-6} \\
\Rightarrow & d_{\mathrm{o}}=0.04452 \mathrm{~m} \text { or } d_{\mathrm{o}}=44.52 \mathrm{~mm}
\end{array}
$$

Hence, the correct answer is 43 to 45 .

Question Number: 24

Question Type: MCQ
A hollow shaft $\left(d_{\mathrm{o}}=2 d_{\mathrm{i}}\right.$ where d_{o} and d_{i} are the outer and inner diameters respectively) needs to transmit 20 kW power at 3000 RPM. If the maximum permissible shear stress is $30 \mathrm{MPa}, d_{\mathrm{o}}$ is
(A) 11.29 mm
(B) 22.58 mm
(C) 33.87 mm
(D) 45.16 mm

Solution: Given: $d_{\mathrm{o}}=2 d_{\mathrm{i}}, P=20 \mathrm{~kW}, N=3000 \mathrm{rpm}$,

Now

$$
\tau_{\max }=30 \mathrm{MPa}
$$

$$
\frac{\tau}{r}=\frac{T}{J} \text { or } \tau_{\max }=\frac{T \times d_{\mathrm{o}} / 2}{\frac{\pi}{32}\left[d_{\mathrm{o}}^{4}-d_{\mathrm{i}}^{4}\right]}
$$

and $\quad P=\frac{2 \pi N T}{60,000} \Rightarrow T=\frac{20 \times 60,000}{2 \times \pi \times 3000}$

$$
\begin{aligned}
& \Rightarrow \quad T=63.662 \mathrm{~N}-\mathrm{m} \\
& \therefore \tau_{\max }=30 \times 10^{6}=\frac{63.662 \times\left(2 d_{i}\right) / 2}{\frac{\pi}{32}\left[\left(2 d_{i}\right)^{4}-d_{i}\right]} \\
& \Rightarrow d_{i}=\sqrt[3]{\frac{63.662 \times 32}{\pi \times 30 \times 10^{6} \times 15}}
\end{aligned}
$$

$$
\Rightarrow \quad d_{\mathrm{i}}=0.01129 \mathrm{~m}
$$

$\therefore d_{\mathrm{o}}=2 d_{\mathrm{i}}=2 \times 0.01129=0.02258 \mathrm{~m}$ or $d_{\mathrm{o}}=22.58 \mathrm{~mm}$
Hence, the correct option is (B).
Question Number: 25
Question Type: MCQ
The total emissive power of a surface is $5000 \mathrm{~W} / \mathrm{m}^{2}$ at a temperature T_{1} and $1200 \mathrm{~W} / \mathrm{m}^{2}$ at a temperature T_{2}, where
the temperatures are in Kelvin. Assuming the emissivity of the surface to be constant, the ratio of the temperatures $\frac{T_{1}}{T_{2}}$ is
(A) 0.308
(B) 0.416
(C) 0.803
(D) 0.875

Solution: Emissive power (P) is proportional to the heat transfer

$$
\Rightarrow \quad P \propto \in T^{4}
$$

As emissivity of the surface is constant

$$
\frac{P_{1}}{P_{2}}=\frac{T_{1}^{4}}{T_{2}^{4}} \Rightarrow \frac{T_{1}}{T_{2}}=\left(\frac{500}{1200}\right)^{0.25}=0.803
$$

Hence, the correct option is (C).

Question Number: 26

Question Type: MCQ
The head loss for a laminar incompressible flow through a horizontal circular pipe is h_{1}. Pipe length and fluid remaining the same, if the average flow velocity doubles and the pipe diameter reduces to half its previous value, the head loss is h_{2}. The ratio h_{2} / h_{1} is
(A) 1
(B) 4
(C) 8
(D) 16

Solution:

$$
h_{1}=\frac{f L V_{1}^{2}}{2 g D_{1}}
$$

Now $V_{2}=2 V_{1}$ and $D_{2}=D_{1} / 2$ then

$$
\begin{aligned}
h_{2} & =\frac{f L\left(2 V_{1}\right)^{2}}{2 g\left(D_{1} / 2\right)} \text { and } \\
\frac{h_{2}}{h_{1}} & =\frac{4 f L V_{1}^{2} \times 2}{2 g D_{1}} \times \frac{2 g D_{1}}{f L V_{1}^{2}} \\
\Rightarrow \frac{h_{2}}{h_{1}} & =8
\end{aligned}
$$

Hence, the correct option is (C).
Question Number: 27

Question Type: NAT

For a fully developed laminar flow of water (dynamic viscosity $0.001 \mathrm{~Pa}-\mathrm{s}$) through a pipe of radius 5 cm , the axial pressure gradient is $-10 \mathrm{~Pa} / \mathrm{m}$. The magnitude of axial velocity (in m / s) at a radial location of 0.2 cm is

Solution:

Given: $\mu=0.001 \mathrm{~Pa}-\mathrm{s}, R=0.05 \mathrm{~m}$

$$
\left(\frac{\partial P}{\partial x}\right)=-10 \mathrm{~Pa} / \mathrm{m}
$$

$$
\begin{aligned}
& U_{\max }=-\frac{1}{4 \mu}\left(-\frac{\partial P}{\partial x}\right) R^{2} \\
& \Rightarrow \quad U_{\max }=\frac{-1}{(4 \times 0.001)} \times(-10) \times 0.05^{2} \\
& \therefore \quad U_{\max }=6.25 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Now velocity profile is $\frac{U}{U_{\max }}=\left[1-\frac{r^{2}}{R^{2}}\right]$

$$
\begin{array}{ll}
\therefore & (U)_{\mathrm{r}}=_{0.002 \mathrm{~m}}=6.25 \times\left[1-\frac{0.002^{2}}{0.05^{2}}\right] \\
\Rightarrow & (U)_{\mathrm{r}}=_{0.002 \mathrm{~m}}=6.24 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Hence, the correct answer is 6.2 to 6.3.

Question Number: 28

Question Type: MCQ
A balanced counter flow heat exchanger has a surface area of $20 \mathrm{~m}^{2}$ and overall heat transfer coefficient of $20 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$. Air ($\left.C_{\mathrm{p}}=1000 \mathrm{~J} / \mathrm{kg}-\mathrm{K}\right)$ entering at $0.4 \mathrm{~kg} / \mathrm{s}$ and 280 K is to be preheated by the air leaving the system at $0.4 \mathrm{~kg} / \mathrm{s}$ and 300 K . The outlet temperature (in K) of the preheated air is
(A) 290
(B) 300
(C) 320
(D) 350

Solution: Energy balance equation

$$
\begin{array}{rlrl}
& & \text { Energy lost } & =\text { Energy gained } \\
\therefore & m_{1} C_{\mathrm{p}}\left(T_{\mathrm{f}}-T_{1}\right) & =m_{2} C_{\mathrm{p}}\left(T_{2}-T_{\mathrm{f}}\right) \\
0.4 \times 1000 \times\left[T_{\mathrm{f}}-280\right] & =0.4 \times 1000 \times\left[300-T_{\mathrm{f}}\right] \\
\Rightarrow & T_{\mathrm{f}} & =290 \mathrm{~K}
\end{array}
$$

Hence, the correct option is (A).

Question Number: 29

Question Type: MCQ
A cylindrical uranium fuel rod of radius 5 mm in a nuclear reactor is generating heat at the rate of $4 \times 10^{7} \mathrm{~W} / \mathrm{m}^{3}$. The rod is cooled by a liquid (convective heat transfer coefficient $\left.1000 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}\right)$ at $25^{\circ} \mathrm{C}$. At steady state, the surface temperature $($ in K$)$ of the rod is
(A) 308
(B) 398
(C) 418
(D) 448

Solution:

Let T_{s} be the surface temperature and T_{∞} be the temperature of liquid

$$
\begin{aligned}
& \frac{\text { Heat generation }}{\text { Volume }}=\frac{\dot{q}}{m^{3}}=4 \times 10^{7} \mathrm{~W} / \mathrm{m}^{3} \\
\therefore & \dot{q}=4 \times 10^{7} \times \pi \times r^{2} \times L \text { Watts } \\
\Rightarrow & \dot{q}=4 \times 10^{7} \times \pi \times 0.005^{2} \times L=1000 \pi L W \\
& \dot{q}=\frac{\Delta T}{(1 / h A)} \Rightarrow 1000 \pi L=\frac{T_{S}-T_{\infty}}{\frac{1}{1000(2 \pi r L)}} \\
\therefore \quad & T_{\mathrm{S}}-298=1000 \pi L \times \frac{1}{1000 \times 2 \pi r L} \\
\Rightarrow & T_{\mathrm{S}}=398 \mathrm{~K}
\end{aligned}
$$

Hence, the correct option is (B).
Question Number: 30
Question Type: NAT
Work is done on a adiabatic system due to which its velocity changes from $10 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$, elevation increases by 20 m and temperature increases by 1 K . The mass of the system is $10 \mathrm{~kg}, C_{\mathrm{v}}=100 \mathrm{~J} /(\mathrm{kg} . \mathrm{K})$ and gravitational acceleration is $10 \mathrm{~m} / \mathrm{s}^{2}$. If there is no change in any other component of the energy of the system, the magnitude of total work done (in kJ) on the system is \qquad -.

Solution: Given: $C_{1}=10 \mathrm{~m} / \mathrm{s}, C_{2}=20 \mathrm{~m} / \mathrm{s}, z_{2}-z_{1}=20 \mathrm{~m}$,

$$
T_{2}-T_{1}=1 \mathrm{~K}
$$

$C_{\mathrm{V}}=100 \mathrm{~J} / \mathrm{kg}-\mathrm{K}, \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}, \delta Q=0$
Assuming compressible fluid with $\gamma=1$

$$
\therefore \frac{C_{P}}{C_{V}}=1 \Rightarrow \mathrm{C}_{\mathrm{P}}=100 \mathrm{~J} / \mathrm{kg}-\mathrm{K}
$$

SFEE:

$$
\begin{aligned}
& m\left[h_{1}+\frac{C_{1}^{2}}{2000}+\frac{g z_{1}}{1000}\right]=m\left[h_{2}+\frac{C_{2}^{2}}{2000}+\frac{g z_{2}}{1000}\right]+\delta W \\
& \delta W=m\left[C_{P}\left(T_{1}-T_{2}\right)+\frac{C_{1}^{2}-C_{2}^{2}}{2000}+\frac{g\left(z_{1}-z_{2}\right)}{1000}\right]
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow \delta W=10\left[0.1(-1)+\frac{\left(10^{2}-20^{2}\right)}{2000}+\frac{10(-20)}{1000}\right] \\
\Rightarrow \quad \delta W=-4.5 \mathrm{~kJ}
\end{gathered}
$$

On the system, $\delta \mathrm{W}=4.5 \mathrm{~kJ}$
Hence, the correct answer is 4.5 .
Question Number: 31

Question Type: NAT

One kg of air ($R=287 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$) undergoes an irreversible process between equilibrium state $1\left(20^{\circ} \mathrm{C}, 0.9 \mathrm{~m}^{3}\right)$ and equilibrium state $2\left(20^{\circ} \mathrm{C}, 0.6 \mathrm{~m}^{3}\right)$. The change in entropy $s_{2}-s_{1}($ in $\mathrm{J} / \mathrm{kg}-\mathrm{K})$ is \qquad
Solution: $T d s=d U+p d V$
or

$$
\begin{array}{ll}
\text { or } & \triangle S=m C_{\mathrm{V}} \ln \frac{T_{2}}{T_{1}}+m R \ln \frac{V_{2}}{V_{1}} \\
& \triangle S=0+1 \times 287 \times \ln \frac{0.6}{0.9} \\
\Rightarrow \quad \triangle S=-116.37 \mathrm{~J} / \mathrm{kg}-\mathrm{K}
\end{array}
$$

Hence, the correct answer is -117 to -115 .

Question Number: 32

Question Type: MCQ
For the same values of peak pressure, peak temperature, and heat rejection, the correct order of efficiencies for Otto, Dual, and Diesel cycles is
(A) $\eta_{\text {Otto }}>\eta_{\text {Dual }}>\eta_{\text {Diesel }}$
(B) $\eta_{\text {Diesel }}>\eta_{\text {Dual }}>\eta_{\text {Otto }}$
(C) $\eta_{\text {Dual }}>\eta_{\text {Diesel }}>\eta_{\text {Otto }}$
(D) $\eta_{\text {Diesel }}>\eta_{\text {Otto }}>\eta_{\text {Dual }}$

Solution: For same peak pressure, peak temperature, and heat rejection, the $\mathrm{P}-\mathrm{V}$ plot is

1-2-3-4 \rightarrow Diesel cycle
$1-2^{1}-3-4 \rightarrow$ Otto cycle
$1-2^{11}-3^{11}-4 \rightarrow$ Dual cycle.
Here

$$
\left(W_{\text {net }}\right)_{\text {diesel }}>\left(W_{\text {net dual }}>\left(W_{\text {net otto }}\right)_{\text {ot }}\right.
$$

$$
\therefore \quad \quad \eta_{\text {diesel }}>\eta_{\text {dual }}>\eta_{\text {otto }}
$$

Hence, the correct option is (B).

Question Number: 33
Question Type: NAT
In a Rankine cycle, the enthalpies at turbine entry and outlet are $3159 \mathrm{~kJ} / \mathrm{kg}$ and $2187 \mathrm{~kJ} / \mathrm{kg}$, respectively. If the specific pump work is $2 \mathrm{~kJ} / \mathrm{kg}$, the specific steam consumption (in $\mathrm{kg} / \mathrm{kW}-\mathrm{h})$ of the cycle based on net output is \qquad
Solution: $W_{\text {net }}=(3159-2187)-2=970 \mathrm{~kJ} / \mathrm{kg}$
\therefore Specific steam consumption, SSC

$$
=\frac{3600}{W_{\mathrm{net}}}=\frac{3600}{970}=3.711 \frac{\mathrm{~kg}}{\mathrm{~kW}-\mathrm{h}}
$$

Hence, the correct answer is 3.6 to 3.8 .
Question Number: 34
Question Type: NAT
A cube and a sphere made of cast iron (each of volume $1000 \mathrm{~cm}^{3}$) were cast under identical conditions. The time taken for solidifying the cube was 4 s . The solidification time (in s) for the sphere is \qquad
Solution: Solidification time $t=k\left(\frac{V}{S}\right)^{2}$
$V=$ Volume, $S=$ Surface area, $k=$ Material constant
Cube of $1000 \mathrm{~cm}^{3} \Rightarrow$ Side of cube $=a=10 \mathrm{~cm}$

$$
\begin{array}{rlrl}
\therefore & & S & =6 \times 10^{2}=600 \mathrm{~cm}^{2} \\
& \therefore \quad t_{\text {cube }} & =4=k\left(\frac{1000}{600}\right)^{2} \Rightarrow k=\frac{36}{25} \frac{\mathrm{sec}}{\mathrm{~m}^{2}} . \\
t_{\text {sphere }} & =k \cdot\left(\frac{V}{S}\right)^{2} \\
& V & =1000 \mathrm{~cm}^{3}=\frac{4}{3} \pi r^{3} \Rightarrow r=6.203 \mathrm{~cm} . \\
& S & =4 \pi r^{2}=483.597 \mathrm{~cm}^{2} . \\
& t_{\text {sphere }} & =\frac{36}{25} \times\left(\frac{1000}{483.597}\right)^{2}=6.157 \mathrm{sec}
\end{array}
$$

Hence, the correct answer is 6.0 to 6.3.
Question Number: 35
Question Type: MCQ
In a two-stage wire drawing operation, the fractional reduction (ratio of change in cross-sectional area to initial cross-sectional area) in the first stage is 0.4 . The fractional reduction in the second stage is 0.3 . The overall fractional reduction is
(A) 0.24
(B) 0.58
(C) 0.60
(D) 1.00

Solution: First stage, $\frac{\Delta A}{A_{0}}=0.4$

$$
\frac{A_{0}-A_{1}}{A_{0}}=0.4 \Rightarrow \frac{A_{1}}{A_{0}}=0.6
$$

Second stage

$$
\frac{\Delta A}{A_{1}}=\frac{A_{1}-A_{2}}{A_{1}}=0.3 \Rightarrow \frac{A_{2}}{A_{1}}=0.7
$$

$$
\text { Overall fractional reduction }=\frac{A_{0}-A_{2}}{A_{0}}=1-\frac{A_{2}}{A_{0}}
$$

$$
\frac{A_{2}}{A_{0}}=\frac{A_{2}}{A_{1}} \times \frac{A_{1}}{A_{0}}=0.7 \times 0.6=0.42
$$

$$
\therefore \quad 1-\frac{A_{2}}{A_{0}}=1-0.42=0.58
$$

Hence, the correct option is (B).
Question Number: 36

Question Type: NAT

The flow stress (in MPa) of a material is given by

$$
\sigma=500 \in^{0.1}
$$

where ε is true strain. The Young's modulus of elasticity of the material is 200 GPa . A block of thickness 100 mm made of this material is compressed to 95 mm thickness and then the load is removed. The final dimension of the block (in mm) is

Solution:

$$
\begin{aligned}
E & =200 \mathrm{GP}_{\mathrm{a}} \\
\text { Strain } & =\frac{\Delta l}{l}=\frac{5}{100}=0.05
\end{aligned}
$$

True strain $\epsilon_{t}=\ln (1+\epsilon)=\ln (1.05)=0.0488$

$$
\begin{aligned}
\therefore \quad \text { Stress } & =\sigma=500 \times \epsilon_{t}^{0.1}=369.67 \mathrm{MPa} \\
E & =\frac{\sigma}{\epsilon} \Rightarrow \in=\frac{369.67 \times 10^{6}}{200 \times 10^{6}}=1.8483 \times 10^{-3}
\end{aligned}
$$

\therefore Change in length after removal of load $=0.18483 \mathrm{~mm}$
\therefore Final dimension of the block $=95+0.18483=$ 95.18483 mm

Hence, the correct answer is 95.14 to 95.20 .
Question Number: 37
Question Type: MCQ
During a TIG welding process, the arc current and arc voltage were 50 A and 60 V , respectively, when the welding speed was $150 \mathrm{~mm} / \mathrm{min}$. In another process, the TIG welding is carried out at a welding speed of $120 \mathrm{~mm} / \mathrm{min}$ at the same arc voltage and heat input to the material so that weld quality remains the same. The welding current (in A) for this process is
(A) 40.00
(B) 44.72
(C) 55.90
(D) 62.25

Solution: Heat input and voltage are same for both processes

$$
Q=V I t
$$

$t=\frac{L}{u}, L=$ length of weld, $u=$ welding speed.
$\therefore \quad Q_{1}=Q_{2} \Rightarrow \frac{I_{1} L_{1}}{u_{1}}=\frac{I_{2} L_{2}}{u_{2}}$
Taking $\quad L_{1}=L_{2}$
$\therefore \quad \frac{50}{150}=\frac{I_{2}}{120} \Rightarrow I_{2}=40 \mathrm{Amp}$
Hence, the correct option is (A).
Question Number: 38
Question Type: MCQ
A single point cutting tool with 0° rake angle is used in an orthogonal machining process. At a cutting speed of $180 \mathrm{~m} / \mathrm{min}$, the thrust force is 490 N . If the coefficient of friction between the tool and the chip is 0.74 , then the power consumption (in kW) for the machining operation is

Solution: Power consumption $=F_{\mathrm{c}} \times V$
$F_{\mathrm{c}}=$ cutting force, $F_{\mathrm{t}}=$ thrust force $=490 \mathrm{~N}$
Part of Merchant's circle is:

$$
\begin{array}{rlrl}
\tan \beta & =\mu=0.7 \\
\Rightarrow \quad \beta & & =35^{\circ}
\end{array}
$$

$\therefore \quad F_{\mathrm{C}}=F_{\mathrm{t}} / \tan \beta=490 / 0.7=700 \mathrm{~N}$
$\begin{aligned} \text { Power consumption } & =700 \times \frac{180}{60}=2100 \mathrm{~W} \\ & =2.1 \mathrm{~kW}\end{aligned}$
Hence, the correct answer is 2.0 to 2.2.
Question Number: 39
Question Type: MCQ
A resistance-capacitance relaxation circuit is used in an electrical discharge machining process. The discharge voltage is 100 V . At spark cycle time of $25 \mu \mathrm{~s}$, the average power input required is 1 kW . The capacitance (in $\mu \mathrm{F}$) in the circuit is
(A) 2.5
(B) 5.0
(C) 7.5
(D) 10.0

Solution: Discharge Voltage, $V_{\mathrm{d}}=100 \mathrm{~V}$
Cycle time, $t=25 \mu \mathrm{~s}$

$$
P_{\text {avg }}=1 \mathrm{~kW}, \text { capacitance }=C
$$

$$
\begin{gathered}
E=\frac{1}{2} C V_{\mathrm{d}}^{2}=\frac{1}{2} \times C \times 100^{2} \\
P=\frac{E}{t} 1000=\frac{\frac{1}{2} \times C \times 100^{2}}{25 \times 10^{-6}} \Rightarrow C=5 \mu \mathrm{~F}
\end{gathered}
$$

Hence, the correct option is (B).
Question Number: 40
Question Type: NAT
A project consists of 7 activities. The network along with the time durations (in days) for various activities is shown in the figure.

The minimum time (in days) for completion of the project is \qquad -.

Solution:

The minimum duration for completion is the critical path time $=40$ days

Hence, the correct answer is 39 to 40 .
Question Number: 41
Question Type: NAT
A manufacturer has the following data regarding a product.
Fixed cost per month $=$ Rs. 50,000
Variable cost per unit = Rs. 200
Selling price per unit $=$ Rs. 300
Production capacity $=1500$ units per month
If the production is carried out at 80% of the rated capacity, then the monthly profit (in ₹) is

Solution: Fixed cost per month $=₹ 50,000(\mathrm{FC})$
Variable cost per unit $=₹ 200$ (V)
Selling price per unit $=₹ 300(\mathrm{~S})$
Production capacity $=1500$ units/month
Production $=80 \%$ of rated capacity.
$\therefore \quad$ Production $=1500 \times 0.8=1200$ units $/$ month
$\therefore \quad$ Selling price $=S=1200 \times 300=₹ 3,60,000$
Variable cost $=V=1200 \times 200=₹ 2,40,000$
$\therefore \quad$ Profit $=S-(V+F C)$

$$
=3,60,000-(2,40,000+50,000)
$$

$$
\text { Profit }=₹ 70,000
$$

Hence, the correct answer is 68000 to 72000 .
Question Number: 42
Question Type: MCQ
At least one eigenvalue of a singular matrix is
(A) positive
(B) zero
(C) negative
(D) imaginary

Solution: We know that the determinant of a matrix A is equal to the product of the eigen values of A
If a matrix A is a singular matrix, then determinant of $A=0$
\Rightarrow The product of the eigen values of $A=0$
\Rightarrow At least one eigen value must be 0 .
Hence, the correct option is (B).
Question Number: 43
Question Type: MCQ
At $x=0$, the function $f(x)=|x|$ has
(A) a minimum
(B) a maximum
(C) a point of inflexion
(D) neither a maximum nor minimum

Solution:

From the graph of $f(x)=|x|, f(x)$ has a minimum at $x=0$.
Hence, the correct option is (A).
Question Number: 44
Question Type: MCQ
Curl of vector $V(x, y, z)=2 x^{2} \boldsymbol{i}+3 z^{2} \boldsymbol{j}+y^{3} \boldsymbol{k}$ at

$$
x=y=z=1 \text { is }
$$

(A) $-3 i$
(B) $3 i$
(C) $3 \boldsymbol{i}-4 \boldsymbol{j}$
(D) $3 \boldsymbol{i}-6 \boldsymbol{k}$

Solution: Given $\bar{V}(x, y, z)=2 x^{2} \bar{i}+3 z^{2} \bar{j}+y^{3} \bar{k}$

$$
\begin{aligned}
\operatorname{curl} \bar{V} & =\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \bar{\partial} & \frac{\partial}{\partial y} \\
2 x^{2} & 3 z^{2} & y^{3}
\end{array}\right| \\
& =\left(3 y^{2}-6 z\right) \bar{i}-(0-0) \bar{j}+(0-0) \bar{k} \\
\therefore \quad \operatorname{curl} \bar{V} & =\left(3 y^{2}-6 z\right) \bar{i} \\
\operatorname{curl} \bar{V} \text { when } x & =y=z=1 \text { is }\left(3(1)^{2}-6 \times 1\right) \bar{i} \\
& =-3 \bar{i} .
\end{aligned}
$$

Hence, the correct option is (A).
Question Number: $45 \quad$ Question Type: MCQ
The Laplace transform of $e^{i 5 t}$ where $i=\sqrt{-1}$ is
(A) $\frac{s-5 i}{s^{2}-25}$
(B) $\frac{s+5 i}{s^{2}+25}$
(C) $\frac{s+5 i}{s^{2}-25}$
(D) $\frac{s-5 i}{s^{2}+25}$

Solution: We have $L\left[e^{i 5 t}\right]=L[\cos 5 t+i \sin 5 t]$

$$
\begin{aligned}
& =L[\cos 5 t]+i L[\sin 5 t] \\
& =\frac{s}{s^{2}+5^{2}}+i\left(\frac{5}{s^{2}+5^{2}}\right) \\
& =\frac{s+5 i}{s^{2}+25}
\end{aligned}
$$

Hence, the correct option is (B).
Question Number: 46
Question Type: NAT
Three vendors were asked to supply a very high precision component. The respective probabilities of their meeting the strict design specifications are $0.8,0.7$, and 0.5 . Each vendor supplies one component. The probability that out of total three components supplied by the vendors, at least one will meet the design specification is \qquad
Solution: Let V_{1}, V_{2}, and V_{3} be the three vendors, who were asked to supply a very high precision component.
Let A, B, and C be the events of the components supplied by V_{1}, V_{2}, and V_{3} respectively, meeting the strict design specifications.
$\therefore \quad P(A)=0.8, P(B)=0.7$ and $P(C)=0.5$
Probability that at least one of the three components will meet the design specifications

$$
\begin{aligned}
& =P(A \cup B \cup C)=1-P(\overline{A \cup B \cup C}) \\
& =1-P(\bar{A} \cap \bar{B} \cap \bar{C})
\end{aligned}
$$

$$
=1-P(\bar{A}) P(\bar{B}) P(\bar{C})
$$

$(\because A, B$, and C are independent $)$

$$
\begin{aligned}
& =1-0.2 \times 0.3 \times 0.5 \\
& =1-0.03 \\
& =0.97
\end{aligned}
$$

Hence, the correct answer is 0.96 to 0.98 .
Question Number: 47
Question Type: NAT
A small ball of mass 1 kg moving with a velocity of $12 \mathrm{~m} / \mathrm{s}$ undergoes a direct central impact with a stationary ball of mass 2 kg . The impact is perfectly elastic. The speed (in m / s) of 2 kg mass ball after the impact will be
Solution: For perfectly elastic impact, coefficient of restitution is 1 .

$$
e=1=\frac{v_{2}-v_{1}}{u_{1}-u_{2}}
$$

u_{1}, u_{2} - initial and final velocities of mass 1 kg .
v_{1}, v_{2} - initial and final velocities of mass 2 kg .

$$
\begin{aligned}
u_{1} & =12 \mathrm{~m} / \mathrm{s}, v_{1}=0 \\
u_{1}-u_{2} & =v_{2}-v_{1} \\
12-u_{2} & =v_{2} \Rightarrow u_{2}=12-v_{2}
\end{aligned}
$$

Conservation of kinetic energy:

$$
\begin{aligned}
& \frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} v_{1}^{2}=\frac{1}{2} m_{1} u_{2}^{2}+\frac{1}{2} m_{2} v_{2}^{2} \\
& \Rightarrow u_{1}^{2}=u_{2}^{2}+2 v_{2}^{2} \Rightarrow 12^{2}=\left(12-v_{2}\right)^{2}+2 v_{2}^{2} \\
& \therefore \quad v_{2}=8 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

Hence, the correct answer is 7.8 to 8.2.
Question Number: 48
Question Type: NAT
A rod is subjected to a uni-axial load within linear elastic limit. When the change in the stress is 200 MPa , the change in the strain is 0.001 . If the Poisson's ratio of the rod is 0.3 , the modulus of rigidity (in GPa) is \qquad
Solution: Young's modulus, $E=\frac{\sigma}{\epsilon}=\frac{200}{0.001}=200 \mathrm{GPa}$

$$
\begin{aligned}
& \\
\Rightarrow \quad & =2 G(1+\mu) \Rightarrow 200=2 G(1+0.3) \\
G & =76.923 \mathrm{GPa}
\end{aligned}
$$

Hence, the correct answer is 76 to 78 .

Question Number: 49

Question Type: MCQ
A gas is stored in a cylindrical tank of inner radius 7 m and wall thickness 50 mm . The gage pressure of the gas is 2 MPa . The maximum shear stress (in MPa) in the wall is
(A) 35
(B) 70
(C) 140
(D) 280

Solution: Given: $D=14 \mathrm{~m}, t=0.05 \mathrm{~m}, P=2 \mathrm{MPa}$

$$
\begin{aligned}
& \sigma_{1}=\sigma_{\mathrm{h}}=\frac{P D}{2 t} \\
& \sigma_{2}=\sigma_{\mathrm{L}}=\frac{P D}{4 t}
\end{aligned}
$$

Maximum inplane shear stress, $\tau_{\max }=\frac{\sigma_{1}-\sigma_{2}}{2}$

$$
\begin{array}{ll}
\Rightarrow & \tau_{\max }=\frac{P D}{8 t}=\frac{2 \times 14}{8 \times 0.05} \\
\Rightarrow & \tau_{\max }=70 \mathrm{MPa}
\end{array}
$$

Absolute shear stress, $\left(\tau_{\max }\right)_{\text {abs }}=\frac{\sigma_{1}}{2}=\frac{P D}{4 t}$

$$
\Rightarrow\left(\tau_{\max }\right)_{\mathrm{abs}}=\frac{2 \times 14}{4 \times 0.05}=140 \mathrm{MPa}
$$

Hence, the correct option is (C).
Question Number: $50 \quad$ Question Type: MCQ

The number of degrees of freedom of the planetary gear train shown in the figure is
(A) 0
(B) 1
(C) 2
(D) 3

Solution: To define the position of any gear or arm in the system of planetary gears completely the rotation of one gear and the arm are required.
\therefore The degree of freedom $=2$
Hence, the correct option is (C).

Question Number: 51

Question Type: NAT
In a spring-mass system, the mass is m and the spring constant is k. The critical damping coefficient of the system is $0.1 \mathrm{~kg} / \mathrm{s}$. In another spring-mass system, the mass is $2 m$ and the spring constant is $8 k$. The critical damping coefficient (in kg / s) of this system is \qquad -.

Solution: Critical damping coefficient, $C_{\mathrm{C}}=2 \times \omega_{\mathrm{n}} \times m$ or

$$
C_{\mathrm{C}}=2 \sqrt{\mathrm{~km}}=0.1 \mathrm{~kg} / \mathrm{s}
$$

Now

$$
m_{1}=2 m, k_{1}=8 \mathrm{k}
$$

$$
\left(C_{\mathrm{C}}\right)_{1}=2 \sqrt{k_{1} m_{1}}=2 \sqrt{2 m(8 k)}
$$

$$
\Rightarrow \quad\left(\mathrm{C}_{\mathrm{C}}\right)_{1}=(2 \sqrt{\mathrm{~km}}) \times 4=4 \mathrm{C}_{\mathrm{C}}
$$

$$
\Rightarrow \quad\left(\mathrm{C}_{\mathrm{C}}\right)_{1}=4 \times 0.1=0.4 \mathrm{~kg} / \mathrm{s}
$$

Hence, the correct answer is 0.38 to 0.42 .

Question Number: 52

Question Type: NAT
The uniaxial yield stress of a material is 300 MPa . According to Von Mises criterion, the shear yield stress (in MPa) of the material is \qquad
Solution: According to Von-mises theory

$$
\mathbf{S}_{\mathrm{yt}}=\sqrt{\sigma_{1}^{2}-\sigma_{1} \sigma_{2}+\sigma_{2}^{2}} \text { and, } \sigma_{1}=-\sigma_{2}=\tau_{\mathrm{xy}} \text { and } \sigma_{3}=0
$$

Putting value of σ_{1} and σ_{2}, we get

$$
S_{\mathrm{yt}}=\sqrt{3 \tau_{x y}^{2}}
$$

$\Rightarrow \quad \mathrm{S}_{\mathrm{yt}}=\sqrt{3} \tau_{\mathrm{xy}}$
Replacing τ_{xy} by S_{sy} we get

$$
S_{\mathrm{sy}}=\frac{S_{\mathrm{yt}}}{\sqrt{3}}=\frac{300}{\sqrt{3}}=173.2
$$

Hence, the correct answer is 171 to 175 .
Question Number: 53
Question Type: MCQ
If the fluid velocity for a potential flow is given by $V(x, y)=$ $u(x, y) i+v(x, y) j$ with usual notations, then the slope of the potential line at (x, y) is
(A) $\frac{v}{u}$
(B) $-\frac{u}{v}$
(C) $\frac{v^{2}}{u^{2}}$
(D) $\frac{u}{v}$

Solution: The fluid velocity for the potential flow

$$
=\bar{V}(x, y)=u(x, y) \bar{i}+v(x, y) \bar{j}
$$

As \bar{V} is irrotational, there exists a scalar point function $\varphi(x, y)$ such that

$$
\begin{align*}
\bar{V} & =\nabla \varphi \\
\Rightarrow \quad u(x, y) \bar{i}+v(x, y) \bar{j} & =\frac{\partial \varphi}{\partial x} \bar{i}+\frac{\partial \varphi}{\partial y} \bar{j} \\
\Rightarrow \quad \frac{\partial \varphi}{\partial x} & =u \text { and } \frac{\partial \varphi}{\partial y}=v \tag{2}
\end{align*}
$$

where $\varphi(x, y)=c$ are known as potential lines.
$\begin{aligned} \text { The slope of the potential line } & =\frac{d y}{d x}=\frac{-\left(\frac{\partial \varphi}{\partial x}\right)}{\left(\frac{\partial \varphi}{\partial y}\right)} \\ & =\frac{-u}{v} .\end{aligned}$
Hence, the correct option is (B).

Question Number: 54

Question Type: MCQ
Which of the following statements regarding a Rankine cycle with reheating are TRUE?
(i) increase in average temperature of heat addition.
(ii) reduction in thermal efficiency
(iii) drier steam at the turbine exit
(A) only (i) and (ii) are correct
(B) only (ii) and (iii) are correct
(C) only (i) and (iii) are correct
(D) (i), (ii), and (iii) are correct

Solution:

$x_{4}>x_{2}{ }^{1} \rightarrow$ Dryness fraction increases at turbine exit.
Therefore, drier steam at the turbine exits and there is increase in average temperature of heat addition.
Hence, the correct option is (C).
Question Number: $55 \quad$ Question Type: MCQ
Within a boundary layer for a steady incompressible flow, the Bernoulli equation
(A) holds because the flow is steady
(B) holds because the flow is incompressible
(C) holds because the flow is transitional
(D) does not hold because the flow is frictional

Solution: Assumption made in Bernoulli's equation
(a) The flow is ideal, i.e., viscosity is zero.
(b) The flow is steady.
(c) The flow is incompressible.
(d) The flow is irrotational.

If any one of the assumption is not satisfied, then the Bernoulli's equation does not hold.

In boundary layer, the flow is viscous or not ideal and hence Bernoulli's equation does not hold.
Hence, the correct option is (D).
Question Number: 56
Question Type: NAT
If a foam insulation is added to a 4 cm outer diameter pipe as shown in the figure, the critical radius of insulation (in cm) is \qquad

Solution: The critical radius of insulation $=r_{\mathrm{c}}=\frac{k}{h}$ where, $k=0.1 \mathrm{~W} / \mathrm{m}-\mathrm{K}$ and $h=2 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{k}$

$$
\therefore \quad r_{\mathrm{c}}=\frac{0.1}{2}=0.05 \mathrm{~m}=5 \mathrm{~cm}
$$

Hence, the correct answer is 4.9 to 5.1 .
Question Number: 57
Question Type: MCQ
In the laminar flow of air $(\operatorname{Pr}=0.7)$ over a heated plate, if δ and δ_{T} denote, respectively, the hydrodynamic and thermal boundary layer thickness, then
(A) $\delta=\delta_{\mathrm{T}}$
(B) $\delta>\delta_{\mathrm{T}}$
(C) $\delta<\delta_{\mathrm{T}}$
(D) $\delta=0$ but $\delta_{\mathrm{T}} \neq 0$

Solution: $\frac{\delta}{\delta_{t}}=P_{r}^{1 / 3} \Rightarrow \delta=(0.7)^{1 / 3} \delta_{\mathrm{t}}$

$$
\Rightarrow \quad \delta=0.8879 \delta_{\mathrm{t}}
$$

$$
\therefore \quad \delta<\delta_{\mathrm{t}}
$$

Hence, the correct option is (C).
Question Number: 58
Question Type: NAT
The COP of a Carnot heat pump operating between $6^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$ is \qquad
Solution: $C O P=\frac{(37+273)}{[(37+273)-(6+273)]}=10$
Hence, the correct answer is 9.8 to 10.2 .
Question Number: 59
Question Type: MCQ
The Vander Waals equation of state is

$$
\int\left[p+\frac{a}{v^{2}}\right](v-b)=R T
$$

where p is the pressure, v is the specific volume, T is the temperature, and R is the characteristic gas constant. The SI unit of a is
(A) $\mathrm{J} / \mathrm{kg}-\mathrm{K}$
(B) $\mathrm{m}^{3} / \mathrm{kg}$
(C) $\mathrm{m}^{5} / \mathrm{kg}-\mathrm{s}^{2}$
(D) $\mathrm{Pa} / \mathrm{kg}$

Solution: $\left[p+\frac{a}{\nu^{2}}\right](\nu-b)=R T$

SI Units:

$p=\mathrm{kN} / \mathrm{m}^{2}, \nu=\mathrm{m}^{3} / \mathrm{kg}$
$T=k, R=\mathrm{kJ} / \mathrm{kg}-\mathrm{K}$
Now

$$
\begin{array}{r}
p(\nu-b)+\frac{a(\nu-b)}{\nu^{2}}=R T \\
\Rightarrow \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \times\left(\frac{\mathrm{m}^{3}}{\mathrm{~kg}}\right)+\frac{a\left(\mathrm{~m}^{3} / \mathrm{kg}\right)}{\left(\mathrm{m}^{3} / \mathrm{kg}\right)^{2}}=\frac{\mathrm{kJ}}{\mathrm{~kg}-\mathrm{K}} \times \mathrm{K}
\end{array}
$$

\therefore The unit of $\frac{a}{\left(\mathrm{~m}^{3} / \mathrm{kg}\right)}$ should be equal to $\mathrm{kJ} / \mathrm{kg}$

$$
\frac{a}{\left(\mathrm{~m}^{3} / \mathrm{kg}\right)}=\frac{\mathrm{kJ}}{\mathrm{~kg}} \Rightarrow \frac{a}{\left(\mathrm{~m}^{3} / \mathrm{kg}\right)}=\frac{\mathrm{kN}-\mathrm{m}}{\mathrm{~kg}}
$$

$$
\Rightarrow a=\frac{\mathrm{kN}-\mathrm{m}}{\mathrm{~kg}} \times \frac{\mathrm{m}^{3}}{\mathrm{~kg}}=\frac{\mathrm{kN}-\mathrm{m}^{4}}{\mathrm{~kg}^{2}}
$$

or

$$
a=\left(\mathrm{kg} \times \frac{\mathrm{m}}{\mathrm{~s}^{2}}\right) \times \frac{\mathrm{m}^{4}}{\mathrm{~kg}^{2}} \Rightarrow a=\frac{\mathrm{m}^{5}}{\mathrm{~kg}-\mathrm{s}^{2}}
$$

Hence, the correct option is (C).

Question Number: 60

Question Type: NAT

A rope-brake dynamometer attached to the crank shaft of an I.C. engine measures a brake power of 10 kW when the speed of rotation of the shaft is $400 \mathrm{rad} / \mathrm{s}$. The shaft torque (in $\mathrm{N}-\mathrm{m}$) sensed by the dynamometer is \qquad -.

Solution: Power $=$ Torque \times Angular speed

$$
\begin{array}{rlrl}
\Rightarrow & 10 \times 10^{3} & =T \times 400 \\
\Rightarrow & & T & =25 \mathrm{~N}-\mathrm{m}
\end{array}
$$

Hence, the correct answer is 24 to 26 .

Question Number: 61

Question Type: NAT
The atomic packing factor for a material with body centered cubic structure is \qquad
Solution: $\begin{aligned} \mathrm{APF} & =\text { Atomic Packing Factor }=\frac{V_{U C}}{V_{\text {atoms }}} \\ V_{\mathrm{UC}} & =\text { Volume of unit cell }\end{aligned}$
$V_{\text {atoms }}=$ Volume of atoms in a unit cell

In BCC (body center cubic),
No. of atoms per unit cell $=2$
Edge length of cube, $a=\frac{4}{\sqrt{3}} r$
where r is the radius of the atom.
\therefore APF of BCC $=\frac{a^{3}}{2 \times \frac{4}{3} \pi r^{3}}=\frac{\left(\frac{4}{\sqrt{3}} r\right)^{3}}{\frac{8}{3} \pi r^{3}}=0.68$
Hence, the correct answer is 0.66 to 0.69 .
Question Number: 62
Question Type: MCQ
The primary mechanism of material removal in electro chemical machining (ECM) is
(A) chemical corrosion
(B) etching
(C) ionic dissolution
(D) spark erosion

Solution: In electrochemical machining is the reverse process of electroplating. Due to high rate of electrolyte movement in between the tool work piece gap, the metal ions are washed away.

Hence, the correct option is (C).
Question Number: 63
Question Type: MCQ
Which one of the following statements is TRUE?
(A) The 'GO' gage controls the upper limit of a hole.
(B) The 'NO GO' gage controls the lower limit of a shaft.
(C) The 'GO' gage controls the lower limit of a hole.
(D) The 'NO GO' gage controls the lower limit of a hole.

Solution:

Plug gage
A plug gage is used to measure holes. The Go gage measures the lower limit and the No Go gage measures the upper limit.

Hence, the correct option is (C).
Question Number: 64
Question Type: MCQ
During the development of a product, an entirely new process plan is made based on design logic, examination of geometry, and tolerance information. This type of process planning is known as
(A) retrieval
(B) generative
(C) variant
(D) group technology based

clxxii | GATE 2015 Solved Paper ME: Set - 3

Solution: The two approaches of computer aided process planning are:
(1) Variant
(2) Generative

Variant approach involves retrieving existing plan for a similar part and making modifications.
Generative approach involves generation of new process plans by means of decision logic and process knowledge.
Hence, the correct option is (B).
Question Number: 65
Question Type: NAT
Annual demand of a product is 50,000 units and the ordering cost is ₹ 7000 per order. Considering the basic economic order quantity model, the economic order
quantity is 10,000 units. When the annual inventory cost is minimized, the annual inventory holding cost (in ₹) is

Solution: $D=50,000$ units/year
Ordering $\operatorname{cost} C_{0}=₹ 7000$ / order $E O Q=q=10,000$ units
For optimal annual inventory cost
Inventory holding cost $=\frac{D}{q} C_{\mathrm{o}}=\frac{50,000}{10,000} \times 7000$

$$
=₹ 35,000
$$

Hence, the correct answer is 34,000 to 36,000 .

