GATE 2019 Solved Paper CS: Computer Science and Information Technology

Number of Questions: 46

Total Marks: 67
Wrong answer for MCQ will result in negative marks, (-1/3) for 1 Mark Questions and (-2/3) for 2 Marks Question.

Q.1-Q. 25 carry one mark each.

Question Number: 1

Question Type: MCQ
Consider $Z=X-Y$, where X, Y and Z are all in sign-magnitude form. X and Y are each represented in n bits. To avoid overflow, the representation of Z would require a minimum of:
(A) n bits
(B) $n+2$ bits
(C) $n+1$ bits
(D) $n-1$ bits

Solution: $Z=X-\mathrm{Y}$
X is n-bit sign magnitude number
Y is n-bit sign magnitude number
To avoid overflow, the representation of Z would require a minimum of $n+1$ bits
Hence, the correct option is (C).
Question Number: 2
Question Type: MCQ
The chip select logic for a certain DRAM chip in a memory system design is shown below. Assume that the memory system has 16 address lines denoted by A_{15} to A_{0}. What is the range of addresses (in hexadecimal) of the memory system that can get enabled by the chip select (CS) signal?

(A) CA00 to CAFF
(B) C800 to CFFF
(C) C800 to C8FF
(D) DA00 to DFFF

Solution:

A_{15}	$\mathrm{~A}_{14}$	$\mathrm{~A}_{13}$	$\mathrm{~A}_{12}$	$\mathrm{~A}_{11}$	-	\mathbf{A}_{4}	$\mathrm{~A}_{3}$	\mathbf{A}_{2}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	
1	1	0	0	1	-	0	0	0	0	0	C 800 H
					.						
					.						
1	1	0	0	1		1	1	1	1	1	CFFFH

Hence, the correct option is (B).

Question Number: 3
Question Type: MCQ
For $\Sigma=\{a, b\}$, let us consider the regular language $L=\left\{x \mid x=a^{2+3 \mathrm{k}}\right.$ or $\left.x=b^{10+12 \mathrm{k}}, k \geq 0\right\}$. Which one of the following can be a pumping length (the constant guaranteed by the pumping lemma) for L ?
(A) 5
(B) 3
(C) 24
(D) 9

Solution: If L is a regular language, then there is a number P (the pumping length) such that S is any string in L of length P or more can be written as $\mathrm{S}=x y z$, satisfying the following conditions.
for each $i \geq 0, x y^{i} z \in \mathrm{~L}$,
$|y|>0$ and $|x y| \leq \mathrm{P}$
So we need to find the minimum length string $s=x y z \in \mathrm{~L}$
such that $x y^{i} z$ should also be L.
$\mathrm{L}=\left\{a^{2}, a^{5}, a^{8}, a^{11} \ldots \ldots\right\}$
Here we can take pumping length as 3 .
$\mathrm{L}=\left\{b^{10}, b^{22}, b^{34} \ldots \ldots\right\}$
Here, the pumping length can be 12 .
If we take pumping length as 24 , in every repetition we will get multiple of 3 and 12 .
Hence, the correct option is (C).

Question Number: 4

Question Type: MCQ
Which one of the following is NOT a valid identity?
(A) $x \oplus y=x+y$, if $x y=0$
(B) $(x \oplus y) \oplus z=x \oplus(y \oplus z)$
(C) $(x+y) \oplus z=x \oplus(\mathrm{y}+z)$
(D) $x \oplus y=\left(x y+x^{\prime} y^{\prime}\right)^{\prime}$

Solution: $(x+y) \oplus z=x \oplus(y+z)$ is not a valid statement. Hence, the correct option is (C).

Question Number: 5
Question Type: MCQ
Which one of the following kinds of derivation is used by LR parsers?
(A) Leftmost in reverse
(B) Leftmost
(C) Rightmost in reverse
(D) Rightmost

Solution: LR parser is a bottom up parser. Bottom up parser uses reverse of right most derivation.
Hence, the correct option is (C).
Question Number: 6
Question Type: NAT
Consider a sequence of 14 elements; $\mathrm{A}=[-5,-10,6,3,-1$, $-2,13,4,-9,-1,4,12,-3,0]$. The subsequence sum $s(i, j)$, where $0 \leq i \leq j<14$. (Divide and conquer approach may be used.)

Solution: $\mathrm{A}[-5,-10,6,3,-1,-2,13,4,-9,-1,4,12,-3,0]$
$\operatorname{Max}(\mathrm{S}(i, j))=\mathrm{S}(2,11)=\sum_{k=2}^{11} A[k]=29$
Hence, the correct answer is (29).

Question Number: 7

Question Type: NAT
Consider the following C program:

```
#include <stdio.h>
int main( ) {
    int arr [ ] = {1, 2, 3, 4, 5, 6, 7,
    8, 9, 0, 1, 2, 5}, *ip = arr + 4;
    printf("%od\n", ip[1];
        return 0;
}
```

The number that will be displayed on execution of the program is \qquad -.

Solution:

Hence, the correct answer is (6).

Question Number: 8

Question Type: MCQ
Consider the following two statements about database transaction schedules:
I. Strict two-phase locking protocol generates conflict serializable schedules that are also recoverable.
II. Timestamp-ordering concurrency control protocol with Thomas' Write Rule can generate view serializable schedules that are not conflict serializable.
(A) II only
(B) I only
(C) Both I and II
(D) Neither I nor II

Solution: The strict two-phase locking protocol guarantees strict schedules (strict schedules are conflict serializable.)
The Timestamp-ordering concurrency control with Thomas, Write Rule does not enforce conflict serializability.
The given both statements are true.
Hence, the correct option is (C).

Question Number: 9
Question Type: NAT
Consider the following C program:

```
#include <stdio.h>
int jumble (int x. int y) {
    x = 2 *x + y;
    return x;
}
int main ( ) {
    int }x=2,y=5
    y = jumble (y, x);
    x = jumble (y, x);
    printf("%d \n", x);
    return 0;
}
```

The value printed by the program is \qquad -

Solution:

x gets updated
Hence, the correct answer is (26).

Question Number: 10

Question Type: MCQ
A certain processor uses a fully associative cache of size 16 kB . The cache block size 16 bytes. Assume that the main memory is byte addressable and uses a 32-bit address. How many bits are required for the Tag and the Index fields respectively in the addresses generated by the processor?
(A) 28 bits and 4 bits
(B) 28 bits and 0 bits
(C) 24 bits and 4 bits
(D) 24 bits and 0 bits

Solution: Cache block size $=16$ Bytes

$$
=2^{4} \mathrm{~B} \Rightarrow \text { Block offset }=4 \text { bits }
$$

Fully associative cache size $=16 \mathrm{kB}$

TAG	Byte offset
$\leftarrow 28$ bits $\longrightarrow \leftarrow 4$ bits \rightarrow	

In fully associative cache, there is no any index. Indexing requires 0 bits and Tag bits $=28$.
Hence, the correct option is (B).

Question Number: 11

The value of $3^{51} \bmod 5$ is \qquad
Question Type: NAT

Solution: We have to find $3^{51} \bmod 5$
$3^{1} \bmod 5=3$
$3^{2} \bmod 5=4$
$3^{3} \bmod 5=2$
$3^{4} \bmod 5=1$
$3^{5} \bmod 5=3$
$3^{6} \bmod 5=4$
$3^{7} \bmod 5=2$
$3^{8} \bmod 5=1$
In general $3^{4 \mathrm{~m}} \bmod 5=1$ for $\mathrm{m} \in \mathrm{z}^{+}$

$$
\therefore 3^{51} \bmod 5=3^{4 \times 12+3} \bmod 5
$$

$$
=3^{3} \bmod 5=2
$$

Hence, the correct answer is (2).
Question Number: 12
Question Type: MCQ
Which one of the following statements is NOT correct about the $\mathrm{B}+$ tree data structure used for creating an index of a relational database table?
(A) Non-leaf nodes have pointers to data records
(B) Key values in each node are kept in sorted order
(C) $\mathrm{B}+$ Tree is a height-balanced tree
(D) Each leaf node has a pointer to the next leaf node

Solution: In a B+ tree, data pointers are stored only at the leaf nodes of the tree.
Hence, the correct option is (A).
Question Number: 13
Question Type: MCQ
If L is a regular language over $\sum=\{a, b\}$, which one of the following language in NOT regular?
(A) Suffix $(\mathrm{L})=\left\{\mathrm{y} \in \Sigma^{*} \mid \exists_{x} \in \Sigma^{*}\right.$ such that $\left.x y \in \mathrm{~L}\right\}$
(B) $\left\{\omega \omega^{\mathrm{R}} \mid \omega \in \mathrm{L}\right\}$
(C) $\mathrm{L} \cdot \mathrm{L}^{\mathrm{R}}=\left\{x y \mid x \in \mathrm{~L}, \mathrm{y}^{\mathrm{R}} \in \mathrm{L}\right\}$
(D) Prefix $(\mathrm{L})=\left\{x \in \Sigma^{*} \mid \exists y \in \Sigma^{*}\right.$ such that $\left.x y \in \mathrm{~L}\right\}$

Solution: The regular languages are closed under reversal and concatenation.
So, L.L ${ }^{R}$ is regular WW ${ }^{R}$ needs a memory (stack), therefore the language is not regular.
prefix (x) and suffix (x) is also regular.
Hence, the correct option is (B).
Question Number: 14
Question Type: NAT
Consider three concurrent processes $\mathrm{P} 1, \mathrm{P} 2$ and P 3 as shown below, which access a shared variable D that has been initialized to 100 .

P1	P2	P3
$:$	$:$	$:$
$:$	$:$	$:$
$D=D+20$	$D=D-50$	$D=D+10$
$:$	$:$	$:$
$:$	$:$	$:$

The processes are executed on a uniprocessor system running a time-shared operating system. If the minimum and maximum possible values of D after the three processes have completed execution are X and Y respectively, then the value of $Y-X$ is \qquad -

Solution: Assembly code of the three process are
Process P_{1} :
(1) Load $\mathrm{R}_{1}, \mathrm{M}[\mathrm{D}]$
(2) $\mathrm{ADD} \mathrm{R}_{1}, \# 20$
(3) STORE M[D], R_{1}

Process P_{2} :
(A) Load $\mathrm{R}_{2}, \mathrm{M}[\mathrm{D}]$
(B) $\mathrm{SUB} \mathrm{R}_{2}, \# 50$
(C) STORE M[D], R 2

Process P_{3} :
(X) Load $\mathrm{R}_{3}, \mathrm{M}[\mathrm{D}]$
(Y) $\mathrm{ADD} \mathrm{R}_{3}$, \#10
(Z) STORE M[D], R 3

Minimum value of D

Process P_{2} executes (A), (B) instructions and got preempted, i.e., it did not store the value 50 to ' D '. Now, process P_{1} and P_{2} executes their instructions, i.e., (1), (2), (3) and (X), (Y), (Z). The value of D will be 130 and now, the instruction (C) is executed, it stores the value 50 to D.

Maximum value of D

Process P_{1} first completed its execution, its value will be 120.

Process P_{3} executes $(X),(Y)$ and get preempted, P_{2} completes its execution. Now, process P_{3} completes (Z) instruction the value will be 130 .
Therefore, value of $(Y-X)$ will be 80 .
Hence, the correct answer is (80).
Question Number: 15
Question Type: NAT
An array of 25 distinct elements is to be sorted using quicksort. Assume that the pivot element is chosen uniformly at random. The probability that the pivot element gets placed in the worst possible location in the first round of partitioning (rounded off to 2 decimal place) is \qquad -.
Solution: For a quick sort, worst case is when array is sorted. Let us consider the first element is considered as a pivot element

Or
The last element is considered as a pivot

Except first and last position all are either average case or best case, as list will get divided in to 2 sublists.
Probability $=\frac{2}{25}=0.08$.
Hence, the correct answer is (0.08).
Question Number: 16
Question Type: MCQ
Which of the following protocol pairs can be used to send and retrieve e- mails (in that order)?
(A) IMAP, SMTP
(B) SMTP, MIME
(C) SMTP, POP3
(D) IMAM, POP3

Solution: Mails can be sent using SMTP and to retrieve emails POP3 is used.
Hence, the correct option is (C).

Question Number: 17

Question Type: NAT
The following C program is executed on a Unix/Linux system

```
#include <unistd.h>
int main( )
{
    int i;
    for (i = 0 ; i + +)
            if (i % 2 = = 0 ) fork( ):
    return 0;
}
```

The total number of child processes created is \qquad .

Solution: Number of times fork() get executed is 5 times i.e for $\mathrm{i}=0,2,4,6,8$.

Number of child process created for ' n ' fork() calls are $2^{n}-1$
Hence, the correct answer is (31).
Question Number: 18
Question Type: MCQ
In 16-bit 2's complement representation, the decimal number -28 is:
(A) 1000000011100100
(B) 1111111100011100
(C) 0000000011100100
(D) 1111111111100100

Solution:

$(28)_{10}=(1 \mathrm{C})_{16}=(00011100)_{2}$
$+28_{10}: 0000000000011100$
$-28_{10}: 1111111111100100$
Hence, the correct option is (D).
Question Number: 19
Question Type: NAT
Consider the grammar given below:
$\mathrm{S} \rightarrow \mathrm{Aa}$
$\mathrm{A} \rightarrow \mathrm{BD}$
$\mathrm{B} \rightarrow \mathrm{b} \mid \in$
$\mathrm{D} \rightarrow \mathrm{d} \mid \epsilon$
Let $\mathrm{a}, \mathrm{b}, \mathrm{d}$, and $\$$ be indexed as follows:

a	b	d	$\$$
3	2	1	0

Compute the FOLLOW set of the non-terminal B and write the index values for the symbols in the FOLLOW set in the descending order. (For example, if the FOLLOW set is $\{\mathrm{a}$, b, d, \$\}, then the answer should be 3210)

Solution: Follow $(B)=$ First (D) U
Follow (A) - $\{\in\}$
$=\{\mathrm{a}, \mathrm{d}\}$
It is indexed as 31.
Hence, the correct answer is (31).

Q.26-Q. 55 carry two marks each.

Question Number: 20
Question Type: NAT
Let \sum be the set of all bijections from $\{1, \ldots . .5\}$ to $\{1, \ldots .$. , $5\}$, where $i d$ denotes the identity function, i.e. $\mathrm{id}(\mathrm{j})=\mathrm{j}, \forall \mathrm{j}$. Let ${ }^{\circ}$ denotes composition on functions. For a string $x=x_{1}$, $x_{2}, \ldots x_{n} \in \sum^{\mathrm{n}}, n \geq 0$, let $\pi(x)=x_{1}{ }^{\circ} x_{2}{ }^{\circ} \ldots .{ }^{\circ} x_{n}$. Consider the language $\mathrm{L}=\left\{x \in \Sigma^{*} \mid \pi(x)=\mathrm{id}\right\}$. The minimum number of states in any DFA accepting L is \qquad -.

Solution: For a set of 5 elements number of bijections possible with itself are $5!=120$.
Minimum number of states required for the language given in the question are 120
Hence, the correct answer is (120).
Question Number: 21
Question Type: NAT
Consider the following relations $\mathrm{P}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \mathrm{Q}(\mathrm{X}, \mathrm{Y}, \mathrm{T})$ and R(Y,V).

\mathbf{P}		
\boldsymbol{X}	\boldsymbol{Y}	\boldsymbol{Z}
$X 1$	$Y 1$	$Z 1$
$X 1$	$Y 1$	$Z 2$

\mathbf{Q}		
\boldsymbol{X}	\boldsymbol{Y}	\boldsymbol{T}
$X 2$	$Y 1$	2
$X 1$	$Y 2$	5

\mathbf{R}	
\boldsymbol{Y}	\boldsymbol{V}
Y 1	V 1
Y 3	V 2

$X 2$	$Y 2$	$Z 2$
$X 2$	$Y 4$	$Z 4$

$X 1$	$Y 1$	6
$X 3$	$Y 3$	1

Y 2	V 3
Y 2	V 2

How many tuples will be returned by the following relational algebra query?
$\Pi_{x}((\mathrm{P} . \mathrm{Y}=\mathrm{R} . \mathrm{Y} \wedge \mathrm{R} . \mathrm{V}=\mathrm{V} 2)(\mathrm{P} \times \mathrm{R}))-\Pi_{x}\left({ }_{(\mathrm{Q} . \mathrm{Y}=\mathrm{R} . \mathrm{Y} \wedge \mathrm{Q} . \mathrm{T}>2)}(\mathrm{Q} \times \mathrm{R})\right)$
Solution:

$\mathbf{P} \times \mathbf{R}$					
\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{Y}	\mathbf{V}	
X_{1}	Y_{1}	Z_{1}	Y_{1}	V_{1}	
X_{1}	Y_{1}	Z_{1}	Y_{3}	V_{2}	
X_{1}	Y_{1}	Z_{1}	V_{2}	V_{3}	
X_{1}	Y_{1}	Z_{1}	Y_{2}	V_{2}	
X_{1}	Y_{1}	Z_{2}	Y_{1}	V_{1}	
X_{1}	Y_{1}	Y_{2}	Y_{3}	V_{2}	
X_{1}	Y_{1}	Z_{2}	Y_{2}	V_{3}	
X_{1}	Y_{1}	Z_{2}	Y_{2}	V_{2}	
X_{2}	Y_{2}	Z_{2}	Y_{1}	V_{1}	
X_{2}	Y_{2}	Z_{2}	Y_{3}	V_{2}	
X_{2}	Y_{8}	Z_{2}	V_{2}	V_{3}	
X_{2}	Y_{2}	Z_{2}	Y_{2}	V_{2}	
X_{2}	Y_{4}	Z_{4}	Y_{1}	V_{1}	
X_{2}	Y_{4}	Z_{4}	Y_{3}	V_{2}	
X_{2}	Y_{4}	Z_{4}	Y_{2}	V_{3}	
X_{2}	Y_{4}	Z_{4}	Y_{2}	V_{2}	

$\left.\pi_{x}\left(\sigma_{(\mathrm{P} . \mathrm{Y}}=\mathrm{R} . \mathrm{Y} \wedge \mathrm{R} . \mathrm{V}=\mathrm{V} 2\right)(\mathrm{P} \times \mathrm{R})\right)$

\boldsymbol{X}
X_{2}

$\left.\pi_{x}\left(\sigma_{(\mathrm{Q} . \mathrm{Y}=\mathrm{R} . \mathrm{Y}} \wedge \mathrm{Q} . \mathrm{T}>2\right)(\mathrm{Q} \times \mathrm{R})\right)$

$X_{2}-X_{1}=X_{2}$
Hence, the correct answer is (1).

Question Number: 22

Question Type: MCQ
Let the set of functional dependencies $F=\{\mathrm{QR} \rightarrow \mathrm{S}, \mathrm{R} \rightarrow$ $\mathrm{P}, \mathrm{S} \rightarrow \mathrm{Q}\}$ hold on a relation schema $X=(\mathrm{PQRS}) . X$ is not in BCNF. Suppose X is decomposed into two schemas Y and Z, where $Y=(\mathrm{PR})$ and $Z=(\mathrm{QRS})$.

Consider the two statements given below.
I. Both Y and Z are in BCNF.
II. Decomposition of X and Y and Z is dependency preserving and lossless.
Which of the above statements is/are correct?
(A) II only
(B) Both I and II
(C) I only
(D) Neither I nor II

Solution: $Y=\mathrm{PR}$ and $Z=\mathrm{QRS}$
$Y \cap Z=\mathrm{R}$ (Key)
As FD R $\rightarrow \mathrm{P}$ is present, R is key.
The given relation is lossless.
The relation Y is in BCNF but relation Z is not in BCNF as in $S \rightarrow Q \mathrm{~S}$ is not a superkey.
Hence, the correct option is (A).
Question Number: 23
Question Type: NAR
Let T be a full binary tree with 8 leaves. (A full binary tree has every level full.) Suppose two leaves a and b of T are chosen uniformly and independently at random. The expected value of the distance between a and b in T (i.e., the number of edges in the unique path between a and b) is (rounded off to 2 decimal places) \qquad -.

Solution:

Full binary tree with 8 leaf nodes

Expected value of the distance between a and $b=0$
$0 \times \frac{8}{64} 2 \times \frac{8}{64}+4 \times \frac{16}{64}+6 \times \frac{32}{64}$
$=\frac{272}{28}=4.25$
Out of 8 leaf nodes any 2 nodes can be chosen $8_{\mathrm{P}_{2}}+8$ (selection of nodes with distance ' 0 ') $=64$.
For length ' 2 ' between a and b will have ' 8 ' possibilities (i.g. (1) \rightarrow (2) and (2) \rightarrow (1) are two different paths)

Hence, the correct answer is (4.25 to 4.25).

Question Number: 24

Question Type: NAT
In a RSA cryptosystem, the value of the public modulus parameter n is 3007 . If it is also known that $\varphi(n)=2880$, where $\varphi()$ denotes Euler's Totient function, then the prime factor of n which is greater than 50 is \qquad -.

Solution: Let p, q be prime numbers.
Given
$p * q=3007$
and
$(p-1)(q-1)=2880$
$p q-p-q+1=2880$
$3007-p-q+1=2880$
$(p+q)=128$
$p+\frac{3007}{p}=128$
$p^{2}+3007=128 \mathrm{p}$
$p^{2}-128 p+3007=0$
On solving
$p=97,31$
Hence, the correct answer is (97).
Question Number: 25
Question Type: MCQ
Assume that in a certain computer, the virtual addresses are 64 bits long and the physical addresses are 48 bits long. The memory is word addressable. The page size is 8 kB and the word size is 4 bytes. The translation Look-aside Buffer (TLB) in the address translation path has 128 valid entries. At most how many distinct virtual addresses can be translated without any TLB miss?
(A) 8×2^{20}
(B) 16×2^{10}
(C) 4×2^{20}
(D) 256×2^{10}

Solution: Logical address $=64$ bits
Physical address $=48$ bits
Page size $=8 \mathrm{~KB}$
Word size $=4 \mathrm{~B}$
TLB entries $=128$
Number of entries in page $=\frac{8 \mathrm{~KB}}{4 \mathrm{~B}}=2 \mathrm{k}$
As the number of entries in TLB are 128. 128 entries translates 128 page numbers into frame numbers.
Distinct virtual addresses can be translated with TLB miss is
128×2^{11}
256×2^{10}
Hence, the correct option is (D).
Question Number: 26
Question Type: MCQ
Consider the first order predicate formula φ :
$\forall x[(\forall z z \mid x \Rightarrow((z=x) \vee(z=1))) \Rightarrow \exists w(w>x) \wedge(\forall z z \mid w$ $\Rightarrow((w=z) \vee(z=1)))]$ Here ' $a \mid b$ ' denotes that ' a divides b ', where a and b are integers. Consider the following sets:
S1. $\{1,2,3$, \qquad ,100\}
S2. Set of all positive integers
S3. Set of all integers
Which of the above sets satisfy φ ?
(A) S1, S2 and S3
(B) S 1 and S 3
(C) S1 and S2
(D) S 2 and S 3

Solution: Given
$\varphi: \forall x[(\forall z z \mid x \Rightarrow((z=x) \vee(z=1))) \Rightarrow \exists w(w>x) \wedge(\forall$ $z z \mid w \Rightarrow(w=z) \vee(z=1)))]$
Means, for every prime number, x , we can find another prime number w such that $w>x$.
Consider S1: $\{1,2,3, \ldots, 100\}$
Take $x=97$

Then there is no prime number w in S 1 such that $w>x$
$\therefore \mathrm{S} 1$ does not satisfy φ
Clearly, S2 and S3 satisfy φ.
Hence, the correct option is (D).
Question Number: 27
Question Type: NAT
A relational database contains two tables Students and Performance as shown below:

Student	
Roll_No	Student name
1	Amit
2	Priya
3	Vinit
4	Rohan
5	Smita

Performance		
Roll_No	Subject_code	Marks
1	A	86
1	B	95
1	C	90
2	A	89
2	C	92
3	C	80

The primary key of the Student table is Roll_no. For the Performance table, the columns Roll_no and Subject_code together form the primary key. Consider the SQL query given below:
SELECT S.Student name, sum(P.Marks)
FROM Student S, Performance P
WHERE P.Marks > 84
GROUP BY S. Student_name;
The number of rows returned by the above SQL query is
\qquad —.

Solution:

Student_name	Sum (P.marks)
Amit	452
Priya	452
Rohan	452
Smita	452
Vinit	452

Hence, the correct answer is (5).
Question Number: 28
Question Type: MCQ
There are n unsorted arrays: $\mathrm{A}_{1} . \mathrm{A}_{2}, \ldots . ., \mathrm{A}_{n}$ Assume that n is odd. Each of $\mathrm{A}_{1} . \mathrm{A}_{2}, \ldots ., \mathrm{A}_{n}$ contains n distinct elements. There are no common elements between any two arrays. The worst-case time complexity of computing the median of $\mathrm{A}_{1} . \mathrm{A}_{2}, \ldots . ., \mathrm{A}_{n}$ is
(A) $\mathrm{O}(n)$
(B) $\mathrm{O}(n \log n)$
(C) $\Omega\left(n^{2} \log n\right)$
(D) $\mathrm{O}\left(n^{2}\right)$

Solution: To compute the median of unsorted array of n elements, it takes $\mathrm{O}(n)$ time. To find the medians of median, it will take $\mathrm{O}\left(n^{2}\right)$ time.
Hence, the correct option is (D).

Question Number: 29
Question Type: NAT
Consider the following four processes with arrival times (in milliseconds) and their length of CPU bursts (in milliseconds) as shown below:

Process	P1	P2	P3	P4
Arrival time	0	1	3	4
CPU burst time	3	1	3	Z

These processes are run on a single processor using preemptive Shortest Remaining Time First scheduling algorithm. If the average waiting time of the processes is 1 millisecond, then the value of Z is \qquad -.
Solution:

Process	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$	$\mathbf{P}_{\mathbf{4}}$
Arrival time	0	1	3	4
Burse time	3	1	3	\mathbf{Z}

Gannt chart

P_{1}	P_{2}	P_{3}	P_{4}
0	1	2	3

at $\mathbf{t}=\mathbf{4}$
Process P_{1} and P_{2} completes its execution. Waiting time of process P_{1} and P_{2} will be 1 and 0 . Process P_{3} waiting time is 1. If Process P_{4} burst time can't be 3 , then the average waiting time (AWS) exceeds 1 ms . It should be either 1 or 2 . If it is 1 , then AWS will be less than 1 . So, process P_{2} burst time will be 2 . Then AWS will be 1 .
Hence, the correct answer is (2).

Question Number: 30 Question Type: MCQ

Consider three machines M, N and P with IP addresses $100.10 .5 .2,100.10 .5 .5$ and 100.10 .5 .6 respectively. The subnet mask is set to 255.255 .255 .252 for all the three machines. Which one of the following is true?
(A) Only M and N belong to the same subnet
(B) Only N and P belong to the same subnet
(C) M, N and P belong to three different subnets
(D) M, N and P all belong to the same subnet

Solution: Subnet mask $=255.255 .255 .252$
Machine M
100.10. 5. 00000010
255.255. 255. 11111100
100.10. 5. 0

Machine N
100.10. 5. 00000101
255.255. 255. 11111100
100.10. 5. 4

Machine P
100.10. 5. 00000110
255.255. 255. 11111100
100.10. 5. 4

Machine N and P belong to the same subnet.
Hence, the correct option is (B).
Question Number: 31
Question Type: MCQ
Consider three 4 -variable functions f_{1}, f_{2}, and f_{3}, which are expressed in sum-of-minterms as
$f_{1}=\sum(0,2,5,8,14)$,
$f_{2}=\sum(2,3,6,8,14,15)$,
$f_{3}=\sum(2,7,11,14)$
For the following circuit with one AND gate and one XOR gate, the output function f can be expressed as:

(A) $\sum(0,2,3,5,6,7,8,11,14,15)$
(B) $\sum(7,8,11)$
(C) $\Sigma(2,7,8,11,14)$
(D) $\Sigma(2,14)$

Solution:

$f_{1}=\Sigma \mathrm{m}(0,2,5,8,14)$
$f_{2}=\Sigma \mathrm{m}(2,3,6,8,14,15)$
$f_{4}=\Sigma \mathrm{m}(2,8,14)$
$f_{3}=\Sigma \mathrm{m}(2,7,11,14)$
$f=\Sigma \mathrm{m}(7,8,11)$
Hence, the correct option is (B).
Question Number: 32
Question Type: NAT
Consider the augmented grammar given below:
$S^{\prime} \rightarrow$ S
$\mathrm{S} \rightarrow(\mathrm{L}) \mid$ id
$\mathrm{L} \rightarrow \mathrm{L}, \mathrm{S} \mid \mathrm{S}$
Let $\mathrm{I}_{0}=\operatorname{CLOSURE}\left(\left\{\left[\mathrm{S}^{\prime} \rightarrow \cdot \mathrm{S}\right]\right\}\right)$. The number of items in the set GOTO ($\mathrm{I}_{0},()$ is: \qquad -

Solution:

Number of items in I_{1} are 5.
Hence, the correct answer is (5).

Question Number: 33

Question Type: MCQ
Suppose that in a IP-over-Ethernet network, a machine X wishes to find the MAC address of another machine Y in its subnet. Which one of the following techniques can be used for this?
(A) X send an ARP request packet to the local gateway's IP address which then finds the MAC address of Y and sends to X.
(B) X send an ARP request packet to the local gateway's MAC address which then finds the MAC address of Y and sends to X.
(C) X sends an ARP request packet with broadcast IP address in its local subnet.
(D) X sends an ARP request packet with broadcast MAC address in its local subnet.

Solution: In IP over Ethernet network, If machine X wants to find MAC address of another machine Y in its subnet, then X sends an ARP request packet with broadcast MAC address in its local subnet.
Hence, the correct option is (D).

Question Number: 34

Question Type: NAT
The index node (inode) of Unix-like file system has 12 direct, one single - indirect and one double - indirect pointers. The disk block size is 4 kB , and the disk block address is 32 - bits long. The maximum possible file size is (rounded off to 1 decimal place) \qquad GB.

Solution: Maximum file size
$=\left[\begin{array}{c}\text { Number of direct pointers }+\left(\frac{\text { Disk block size }}{\text { Disk block address }}\right) \\ +\left(\frac{\text { Disk block size }}{\text { disk block address }}\right)\end{array}\right]$

* (Disk Block size)
$=\left[12+\frac{4 \mathrm{~KB}}{4 \mathrm{~B}}+\left(\frac{4 \mathrm{~KB}}{4 \mathrm{~B}}\right)^{2}\right] 4 \mathrm{~KB}$
$=[12+4 \mathrm{~K}+1 \mathrm{M}] * 4 \mathrm{~KB}$
$=48 \mathrm{~KB}+16 \mathrm{MB}+4 \mathrm{~GB}$
$\cong 4 \mathrm{~GB}$
Hence, the correct answer is (3.7 to 3.8 or 4.0 to 4.1).

Question Number: 35

Question Type: MCQ
Consider the following snapshot of a system running n concurrent processes. Processes i is holding X_{i} instances of a resource $R, 1 \leq i \leq n$. Assume that all instances of R are currently in use. Further, for all i, process i can place a request for at most Y_{i} additional instances of R while holding the X_{i} instances it already has. Of the n processes, there are exactly
two processes p and q such that $Y_{p}=Y_{q}=0$. Which one of the following conditions guarantees that no other process apart from p and q can complete execution?
(A) $\operatorname{Min}\left(X_{p}, X_{q}\right) \leq \operatorname{Max}\left\{Y_{k} \mid 1 \leq k \leq n, k \neq p, k \neq q\right\}$
(B) $X_{p}+X_{q}<\operatorname{Max}\left\{Y_{k} \mid 1 \leq k \leq n, k \neq p, k \neq q\right\}$
(C) $X_{p}+X_{q}<\operatorname{Min}\left\{Y_{k} \mid 1 \leq k \leq n, k \neq p, k \neq q\right\}$
(D) $\operatorname{Min}\left(X_{p}, X_{q}\right) \geq \operatorname{Min}\left\{Y_{k} \mid 1 \leq k \leq n, k \neq p, k \neq q\right\}$

Solution: Given
$X_{i} \rightarrow$ Holding resources for process p_{i}
$Y_{i} \rightarrow$ Additional resources for process p_{i}
As process p and q doesn't require any additional resources, it completes its execution and available resources are $\left(X_{p}+X_{q}\right)$
There are $(n-2)$ process $p_{i}(1 \leq i \leq n, \mathrm{i} \neq p, q)$ with their requirements as $Y_{i}(1 \leq i \leq n, i \neq p, q)$. In order to not execute process p_{i}, no instance of Y_{i} should be satisfied with (X_{p} $\left.+X_{q}\right)$ resources, i.e., minimum of Y_{i} instances should be greater than $\left(X_{p}+X_{q}\right)$.
Hence, the correct option is (C).
Question Number: 36
Question Type: NAT
Consider the following C program:

```
# include < stdio. h>
int main ( )
{
    Int a [ ] = {2, 4, 6, 8, 10}
    int i, sum = 0, *b = a + 4;
    for (i = 0; i < 5; i + +)
    sum = sum + (*b - i) - *(b - i);
    printf("%d\n", sum);
    return 0;
}
```

The output of the above C program is \qquad

Solution:

$\mathrm{i}=0$
sum $=0+10-10=0$
$\mathrm{i}=1$
sum $=0+9-8=1$
$i=2$
sum $=1+8-6=3$
$i=3$
sum $=3+7-4=6$
$i=4$
sum $=6+6-2=10$
Hence, the correct answer is (10).

Question Number: 37

Question Type: MCQ
Consider the following C function.

```
void convert (int n) {
    if (n < O)
    printf ("%d", n);
    else {
        convert (n/2);
        printf("%d", n %2);
    }
}
```

Which one of the following will happen when the function convert is called with any positive integer n as argument?
(A) It will print the binary representation of n and terminate.
(B) It will print the binary representation of n but will not terminate.
(C) It will not print anything and will not terminate.
(D) It will print the binary representation of n in the reverse order and terminate.

Solution: Let, $n=5$

As the program will terminate for negative value and if we divide zero by 2 , it will give infinite value. The program will not terminate and doesn't print anything.
Hence, the correct option is (C).

Question Number: 38

Question Type: NAT
Consider that 15 machines need to be connected in a LAN using 8 - port Ethernet switches, assume that these switches do not have any separate uplink ports. The minimum number of switches needed is

Solution: In an 8-port Ethernet switch, one port is used for networks connection and one port for the other switch, total 6 ports are used for connecting machines. For 15 machines, it requires 3 switches.
Hence, the correct answer is (3).

Question Number: 39

Question Type: NAT
What is the minimum number 2-input NOR gates required to implement a 4 -variable function expressed in sum-ofminterms form as $\mathrm{F}=\sum(0,2,5,7,8,10,13,15)$?. Assume that all the inputs and their complements are available.

Solution:

$\mathrm{F}=\mathrm{I}+\mathrm{II}=\overline{\mathrm{B}} \overline{\mathrm{D}}+\mathrm{BD}$

$\mathrm{F}=\overline{\mathrm{BD}}+\mathrm{BD}=\mathrm{B} \odot \mathrm{D}$
Hence, to implement the given function in sum of minterms form, we need to take four 2-input NOR gates.
Hence, the correct answer is (3).

Question Number: 40

Question Type: NAT
A certain processor deploys a single-level cache. The cache block size is 8 words and the word size is 4 bytes. The memory system uses a $60-\mathrm{MHz}$ clock. To service a cache miss, the memory controller first takes 1 cycle to accept the starting address of the block, it then takes 3 cycles to fetch all the eight words of the block, and finally transmits the words of the requested block at the rate of 1 word per cycle. The maximum bandwidth for the memory system when the program running on the processor issues a series of read operations is \qquad $\times 10^{6}$ bytes/sec.

Solution: Block is 8 words
words is 4 bytes
Block size $=8 \times 4$

$$
=32 \text { Bytes }
$$

To transfer a block from memory
$=(1+3+8)=12$ clocks
In 12 clocks, it transfers 32 bytes
12 clocks $\rightarrow 32$ Bytes
$60 \times 10^{6} \rightarrow$?
$=\frac{60 \times 10^{6} \times 32}{12}$
$=160$ bytes $/ \mathrm{sec}$
Hence, the correct answer is (160).
Question Number: 41
Question Type: MCQ
Consider the following statements;
I. The smallest element in a max-heap is always at a leaf node.
II. The second largest element in a max-heap is always a child of the root node.
III. A max-heap can be constructed from a binary search tree in $\theta(n)$ time.
IV. A binary search tree can be constructed from a maxheap in $\theta(n)$ time.
Which of the above statements are TRUE?
(A) I, II and III
(B) I, III and IV
(C) II, III and IV
(D) I, II and IV

Solution: I. The smallest element in a max-heap is always present at a leaf node, it takes $\theta(n)$ time to find smallest element.
II. The largest element in a max-heap is root element whereas second largest is either left child or right child.
III. Construction of max-heap from binary search tree will take $\theta(n)$ time.
IV. A binary search tree can not be constructed from a max-heap in $\theta(n)$ time.
Hence, the correct option is (A).

Question Number: 42

Question Type: MCQ
Consider the following C program:

```
#include <stdio.h>
int r( ) {
    static int num = 7;
    return num --;
}
int main( ) {
    for (r ( ); r ( ); r ( ))
    printf("%d", r( ));
    return 0;
}
```

Which one of the following values will be displayed on execution of the programs?
(A) 63
(B) 52
(C) 41
(D) 630

Solution: r()$/ /$ initialization
num 176
As post - decrement is present first the values ' 7 ' is returned and then it will get decremented.
r()$/ /$ condition
num $\varnothing 5$
print (r()) num $\$ 4$
Here ' 5 ' will be printed first then it will be decremented.
r()$/ /$ increment / decrement
num 43
r()$/ /$ condition
num $\nexists 2$
As non-zero value is returned by function $r()$, print statement will get executed.
print (r()) num $2 \underline{2} 1$
Value ' 2 ' will get printed first.
$r() / /$ increment/decrement
num $\lfloor 10$
r()$/ /$ condition
num $\varnothing-1$
As 'zero' is returned, the loop terminates,
The value printed is 52 .'
Hence, the correct option is (B).
Question Number: 43 Question Type: NAT
Consider the following C program:

```
#include <stdio.h>
int main( ) {
    float sum = 0.0, j = 1.0, i = 2.0;
    while (i/j >0.0625) {
        j = j + j;
        sum = sum + i/j;
        printf("%f\n", sum);
    }
    return 0;
    }
```

The number of times the variable sum will be printed, when the above program is executed, is \qquad —.

Solution:

Sum 0.0 j 1.0 i 2.0
$2.0>0.0625$
$j=2.0$
Sum $=0+1.0$
Print (1.0)//1
$2.0 / 2.0>0.0625$
$\mathrm{j}=4.0$
sum $=1.0+0.5=1.5$
print (1.5)//2
$4.0 / 2.0>0.0625$
$j=8.0$
sum $=1.5+0.25=1.75$
print (1.75)//3
$8.0 / 2.0>0.0625$
$j=16.0$
sum $=1.75+0.125=1.875$
print (1.875)//4
$16.0 / 2.0>0.0625$
$j=32.0$
sum $=1.875+0.0625=1.9375$
print (1.9375)//5
The sum get printed 5 times.
Hence, the correct answer is (5).
Question Number: 44
Question Type: MCQ
Consider the following sets:
S1. Set of all recursively enumerable languages over the alphabet $\{0,1\}$
S2. Set of all syntactically valid C programs
S3. Set of all languages over the alphabet $\{0,1\}$
S4. Set of all non-regular languages over the alphabet $\{0$, 1\}
Which of the above sets are uncountable?
(A) S2 and S3
(B) S 1 and S 2
(C) S3 and S4
(D) S 1 and S 4

Solution: Recursively enumerable languages are countable.
Syntactically valid C program can be represented with CFG. CFG generates CFL, CFL is countable.
All languages over $\{0,1\}$ may not be countable.
Set of regular languages are countable, non-regular languages may not be countable.
Hence, the correct option is (C).
Question Number: 45
Question Type: MCQ
Consider the following grammar and the semantic actions to support the inherited type declaration attributes. Let X_{1}, $\mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}, \mathrm{X}_{5}$ and X_{6} be the placeholders for the non-terminals $\mathrm{D}, \mathrm{T}, \mathrm{L}$ or L_{1} in the following table:

Production rule	Semantic action
$\mathrm{D} \rightarrow \mathrm{TL}$	X_{1}. type $=\mathrm{X}_{2}$ type
$\mathrm{T} \rightarrow$ int	T. type $=\mathrm{int}$

$T \rightarrow$ float	T.type $=$ float
$L \rightarrow L_{1}$, id	X_{3}.type $=X_{4}$ type add Type (id entry, X_{5}.type)
$L \rightarrow$ id	Add Type (id.entry, X_{6}.type)

Which one of the following are the appropriate choice for $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$, and X_{4} ?
(A) $\mathrm{X}_{1}=\mathrm{T}, \mathrm{X}_{2}=\mathrm{L}, \mathrm{X}_{3}=\mathrm{L}_{1}, \mathrm{X}_{4}=\mathrm{T}$
(B) $\mathrm{X}_{1}=\mathrm{L}, \mathrm{X}_{2}=\mathrm{T}, \mathrm{X}_{3}=\mathrm{L}_{1}, \mathrm{X}_{4}=\mathrm{L}$
(C) $\mathrm{X}_{1}=\mathrm{T}, \mathrm{X}_{2}=\mathrm{L}, \mathrm{X}_{3}=\mathrm{T}, \mathrm{X}_{4}=\mathrm{L}_{1}$
(D) $\mathrm{X}_{1}=\mathrm{L}, \mathrm{X}_{2}=\mathrm{L}_{1}, \mathrm{X}_{3}=\mathrm{L}_{1}, \mathrm{X}_{4}=\mathrm{T}$

Solution: Given, inherited attributes are evaluated by bottom up evaluation.
For production
$\mathrm{D} \rightarrow$ TL
The semantic action will be
L. type $=$ T. type

As the L. type is decided by the T. type Similarly, L_{1}. Type is decided by L. type, for the production
$\mathrm{L} \rightarrow \mathrm{L}_{1}$, id
\therefore the values of $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ and X_{4} are
$\mathrm{L}, \mathrm{T}, \mathrm{L}_{1}$ and L
Hence, the correct option is (B).
Question Number: 46
Question Type: MCQ
Which one of the following languages over $\Sigma=\{a, b\}$ is NOT context-free?
(A) $\left\{\mathrm{ww}^{\mathrm{R}} \mid \mathrm{w} \in\{a, b\}^{*}\right\}$
(B) $\left\{\mathrm{wa}^{\mathrm{n}} b^{\mathrm{n}} \mathrm{w}^{\mathrm{R}} \mid \mathrm{w} \in\{a, b\}^{*}, n \geq 0\right\}$
(C) $\left\{\mathrm{wa}^{\mathrm{n}} \mathrm{w}^{\mathrm{R}} b^{\mathrm{n}} \mid \mathrm{w} \in\{a, b\}^{*}, n \geq 0\right\}$
(D) $\left\{a^{\mathrm{n}} b^{\mathrm{i}} \mid \mathrm{i} \in\{n, 3 \mathrm{n}, 5 \mathrm{n}\}, n \geq 0\right\}$

Solution: It is not possible to draw a PDA for language $\mathrm{L}=\left\{\mathrm{wa}^{\mathrm{n}} \mathrm{w}^{\mathrm{R}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{w} \in\{a, b\}^{*}, n \geq 0\right\}$
Hence, the correct option is (C).

