
 Solution: (a)

 E = Young’s modulus

 G = Shear modulus

 μ = Poisson’s ratio

 

E G

G
E

= +

=
+

2 1

2 1

( )

( )

µ

µ

 Hence, the correct option is (a).

 4. U
1
 and U

2
 are the strain energies stored in a pris-

matic bar due to axial tensile forces P
1
 and P

2
, 

respectively. The strain energy U stored in the same 

bar due to combined action of P
1
 and P

2
 will  be

 [2007]

 (a) U U U= +
1 2

 (b) U U U
1 2

 (c) U U U< +
1 2

 (d) U U U> +
1 2

 Solution: (d)

  Strain energy stored in a prismatic bar due to axial 

load P U
P L

AE
1 1

1

2

2
, .

  Strain energy stored in a prismatic bar due to axial 

load P U
P L

AE
2 2

2

2

2
, .

  Strain energy stored in a prismatic bar due to com-

bined axial load P
1
 and P

2
,

U
P P L

AE

P L

AE

P L

AE

P P L

AE

U U U
P P L

AE

=
+

= + +

= + +

( )
1 2

2

1

2

2

2

1 2

1 2

1 2

2 2 2

2

2

2

2

  Therefore, U > U
1
 + U

2

 Hence, the correct option is (d).

Simple Stresses and Strains

 1. The Poisson’s ratio is defined as [2012]

 (a) 
axial stress

lateral stress
 (b) 

lateral strian

axial strian

 (c) 
lateral stress

axial stress
 (d) 

axial strian

lateral strian

 Solution: (b)

  Poisson’s ratio is defined as the ratio of lateral 

strain to axial strain.

 Hence, the correct option is (b).

 2. The number of independent elastic constants for 

a linear elastic isotropic and homogeneous mate-

rial is [2010]

 (a) 4 (b) 3

 (c) 2 (d) 1

 Solution: (c)

  For a linear elastic isotropic and homogeneous 

 material,

E G
m

K
m

= +








 = −









2 1

1
3 1

2

  All the three elastic constants can be found if any 

two of them are known. Hence, the number of in-

dependent elastic constants are 2.

 Hence, the correct option is (c).

 3. For an isotropic material, the relationship between 

the Young’s modulus (E), shear modulus (G) and 

Poisson’s ratio (μ) is given by [2007]

 (a) G
E

=
+2 1( )µ

 (b) E
G

=
+2 1( )µ

 (c) G
E

=
+( )1 2µ

 (d) G
E

=
−2 1( )µ

ONE-MARK QUESTIONS

Chapter 1
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 5. For linear elastic systems, the type of displacement 

function for the strain energy is [2004]

 (a) linear (b) quadratic

 (c) cubic (d) quartic

 Solution: (b)

 Strain energy, U = × ×
1

2
Stress Strain

 
U e E e e E e= = =

1

2

1

2

1

2

2
σ . .

  Therefore, strain energy is a function of the square 

of displacement. The displacement function for 

strain energy is quadratic.

 Hence, the correct option is (b).

 6. The shear modulus (G), modulus of elasticity 

(E)and the Poisson’s ratio (v) of a material are 

related as, [2002]

 (a) G E v= +[ ( )]2 1

 (b) E G v= +[ ( )]2 1

 (c) G E v= −[ ( )]2 1

 (d) G E v= −[ ( )]2 1

 Solution: (a)

 G = Shear modulus

 E = Modulus of elasticity

 v = Poisson’s ratio

  Relationship between the above parameters is 

E = 2G (1 + v)

 Hence, the correct option is (a).

 7. The material that exhibits the same elastic proper-

ties in all directions at a point is said to be [1995]

 (a) homogeneous (b) orthotropic

 (c) viscoelastic (d) isotropic

 Solution: (d)

  Homogeneous material is uniform in composition 

and character.

  Orthotropic material has di"erent material proper-

ties or strengths in di"erent orthogonal directions.

  Isotropic material has the same properties in all di-

rections.

  Viscoelasticity is the property of the material that 

exhibit both viscous and elastic characteristics 

when undergoing deformation.

 Hence, the correct option is (d).

 8. The maximum value of Poisson’s ratio for an elas-

tic material is [1991]

 (a) 0.25 (b) 0.5

 (c) 0.75 (d) 0.1

 Solution: (b)

  The maximum Poisson’s ratio is 0.5 for an ideal 

elastic incompressible material whose volumetric 

strain is 0.

 Hence, the correct option is (b).

 9. A cantilever beam of tubular section consists of 

two materials, copper as outer cylinder and steel 

as inner cylinder. It is subjected to a temperature 

rise of 20°C and it is given that α
copper

 > α
steel

. The 

stresses developed in the tubes will be [1991]

 (a) compression in steel and tension in copper.

 (b) tension in steel and compression in copper.

 (c) no stress in both.

 (d) tension in both the materials.

 Solution: (b)

Copper

Steel

 Rise of temperature, T = 20°C 

 α
copper

 > α
steel

  Extension of beam due to rise of temperature, 

δl= LαT

 L = Length of the beam

 α = Coe#cient of linear expansion

 T = Change of temperature

  Since, α
copper

 > α
steel

, the free expansion of copper is 

more than the steel, (δl)
copper

 > (δl)
steel

  Since, the two materials are brazed together, cop-

per tube try to pull the steel tube and steel tube 

push the copper tube. Therefore, tensile stress in-

duced in steel tube and compressive stress is in-

duced in copper tube.

 Hence, the correct option is (b).

TWO-MARKS QUESTIONS

 1. An elastic isotropic body is in a hydrostatic state 

of stress as shown in the figure. For no change in 

the volume to occur, what should be its Poisson’s 

ratio? [2016]
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σ
x

σ
Z

σ
y

 (a) 0.00 (b) 0.25

 (c) 0.50 (d) 1.00

 Solution: (c)

 For no change in the volume

 Volumetric strain (ε
v
) = 0

ε ε ε
µx y z

+ +







 − =

3
1 2 0( )

 1 − 2μ = 0

 1 = 2μ

 Poissions ratio µ = =
1

2
0 5. .

 Hence, the correct option is (c).

 2. A tapered circular rod of diameter varying from 

20 mm to 10 mm is connected to another uniform 

circular rod of diameter 10 mm as shown in the 

following figure. Both bars are made of same 

material with the modulus of elasticity, E = 2 × 

105 MPa. When subjected to a load P = 30 πkN, 

the section at point A is _______ mm. [2015]

P = 30 πkN

A

d
2
 = 10 mm

d
1
 = 20 mm

2 m

1.5 m

 Solution: 15

30 π

30 π

30 π

1.5 m

30 π

d
2

d
1

 For tappered bar

 

∆
1

1 2

4
=

PL

d d Eπ

      
=

× × ×

× × × ×

=
4 30 2 10

20 10 2 10
6

6

5

π

π
mm

 
∆

2
=

PL

AE

       
=

× × ×

× × × ×

=
30 1 5 10 4

10 10 2 10
9

6

5

π

π

( . )
mm

 ∴ Total deflection at A = Δ
1
 + Δ

2 
 = 15 mm.

 Hence, the answer is 15 mm.

 3. A mild steel specimen is under uni-axial tensile 

stress. Young’s modulus and yield stress for mild 

steel are 2 × 105 MPa and 250 MPa, respectively. 

The maximum amount of strain energy per unit 

volume that can be stored in this specimen without 

permanent set is [2008]

 (a) 156 Nmm/mm3

 (b) 15.6 Nmm/mm3

 (c) 1.56 Nmm/mm3

 (d) 0.156 Nmm/mm3

 Solution: (d)

  Modulus of elasticity of mild steel, E = 2 × 105 MPa

 Yield stress of mild steel, σ
y
 = 250 MPa

 Strain energy per unit volume,U
E

=
σ

2

2

 Maximum strain energy occurs at yield stress.

 
U

max

3N mm/mm=

× ×

=
( )

.
250

2 2 10
0 156

2

5

 Hence, the correct option is (d).
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 Solution: (c)

 Length of the bar, L = 100 mm

 Temperature increase = ΔT

  Coe#cient of thermal expansion, 

 α = 12 × 10−6 / °C

 Young’s modulus, E = ×
−2 10 5 MPa

  Stress in the bar due to change of temperature,

σ α= TE  = × × × × =
−12 10 10 2 10 246 5 MPa

 Hence, the correct option is (c).

 6. A rigid bar is suspended by three rods made of 

the same material as shown in the figure. The area 

and length of the central rod are 3A and L, respec-

tively while that of the two outer rods are 2A and 

2L, respectively. If a downward force of 50 kN is 

applied to the rigid bar, the forces in the central 

and each of the outer rods will be [2007]

 (a) 16.67 kN each

 (b) 30 kN and 15 kN

 (c) 30 kN and10 kN

 (d) 21. 4 kN and 14.3 kN

 Solution: (c)

50 kN

2 A

2 L

2 A

2 L

3 A

L

 Let

 P
1
 = Force in the central rod

 P
2 
= Force in each outer rods

  P
1
 + 2P

2
 = 50 (1)

  Since, the rigid bar is symmetric, the elongation of 

central rod and outer rod is same.

     
P L

A E

P L

A E

P L

AE

P L

AE
P P

P P

P

P

1 1

1

2 2

2

1 2

1 2

2 2

2

1

3

2

2
3

3 2 50

10

3

= = =

+ =

=

=

; ;

kN

00 kN

 (2)

 Force in central rod, P
1
 = 30 kN 

 Force in each of outer rod, P
2
 = 10 kN 

 Hence, the correct option is (c).

 4. A vertical rod PQ of length L is fixed at its top end 

P and has a flange fixed to the bottom end Q. A 

weight W is dropped vertically from a height h < L 

on to the flange. The axial stress in the rod can be 

reduced by [2008]

 (a) increasing the length of the rod.

 (b) decreasing the length of the rod.

 (c) decreasing the area of cross-section of the rod.

 (d)  increasing the modulus of elasticity of the 

 material.

 Solution: (a)

h

P

W

Q

  The kinetic energy of the weight W is stored in 

the form of strain energy in the rod. Strain energy 

stored in the rod, U
E

AL= ×
σ

2

2

 σ = Axial stress in the rod

 A = Cross sectional area of the rod

 L = Length of the rod

 E = Modulus of elasticity of the rod

  The strain energy remains constant. The axial 

stress in rod can be reduced by

   (i) increasing the length of rod.

  (ii) increasing cross sectional area of the rod.

 (iii)  decreasing the modulus of elasticity of the rod.

 Hence, the correct option is (a).

 5. A metal bar of length 100 mm is inserted between 

two rigid supports and its temperature is increased 

by 10°C. If the coe#cient of thermal expansion is 

12 × 10−6 per °C and the Young’s modulus is 2 × 

105 MPa, the stress in the bar is [2007]

 (a) 0 (b) 12 MPa

 (c) 24 MPa (d) 2400 MPa
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 7. A bar of varying square cross-section is loaded 

symmetrically as shown in the figure. Loads 

shown are placed on one of the axes of symmetry 

of cross-section. Ignoring self weight, the maxi-

mum tensile stress in N/mm2 anywhere is [2003]

50 mm

50 km

100 mm

100 km 100 km

 (a) 16.0 (b) 20.0

 (c) 25.0 (d) 30.0

 Solution: (c)

50 mm

50 km

100 mm

100 km 100 km

 Tensile stress, σ =
P

A

 Load in lower bar, P
1
 = 50 kN

 Load on upper bar, P
2
 = 100 + 100 + 50 = 250 kN

  Cross sectional area of lower bar, A
1
 = 50 × 50 = 

2500 mm2

  Cross sectional area of upper bar, A
2
 = 100 × 100 = 

1 × 104 mm2

  Tensile stress in lower bar,

σ
1

350 10

250
20=

×
= N/mm2

  Tensile stress in upper bar,

σ
2

3

4

250 10

1 10
25=

×

×

= N/mm2

 Maximum tensile stress = 25 N/mm2

 Hence, the correct option is (c).



 2. A horizontal beam ABC is loaded as shown in the 

figure below. The distance of the point of contraf-

lexure from end A (in m) is _________. [2015]

0.75 m

1 m

10 kN

CA B

 Solution: 0.25

10 kN

0.75 m

1 m

 Equivalent beam 

10 kN

2.25 kNm1.25 kNm

0.75 m

A

B

 Due to moment, M = 2.25 kNm

 Carryover moment of 1.25 kNm

ONE-MARK QUESTIONS

 1. Two triangular wedges are glued together as shown 

in the figure. The stress acting normal to the inter-

face, σ
n
 is ______ MPa. [2015]

100 MPa

100 MPa100 MPa

100 MPa

45°

σ
2

 Solution: 0

 Normal stress

 

J
J J J J

n
=

+
+

−









1 2 1 2

2 2
2cos θ

    J
1
 = 100 (tension)

     J
2
 = −100 (compression)

 
J

n
=

−
+

+









100 100

2

100 100

2
90cos

 

       = 0

 Hence, the answer is 0.

Principal Stresses 

and Strains

Chapter 2
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 acts on support A 

  ΣM
A
 = 10 × 1 – R

B
 × 0.75 + 1.25 = 0

  R
B
 = 15 kN

  R
N
 = −5 kN

 Point of contraflexure

  M
A
 + R

A
x = 0

  1.25 – 5 × x = 0

  x = 0.25 m

 Hence, the answer is 0.25.

 3. For the plane stress situation shown in the figure, 

the maximums shear stress and the plane on which 

it acts are: [2015]

σ
y 
= 50 MPa

σ
y 
= 50 MPa

σ
x 
= 50 MPa σ

x 
= 50 MPa

 (a) −50 MPa, on a plane 45o clockwise w.r.t. x-axis

 (b)  −50 MPa, on a plane 45o anti-clockwise w.r.t. 

x-axis

 (c) 50 MPa, at all orientations

 (d) Zero, at all orientations

 Solution: (d)

  σ
1
 = 50 MPa (− Tensile)

  σ
2
 = 50 MPa (− Tensile)

 Maximum share stress

σ
max

 = 0

 (radius of mohr circle)

50 MPa

A, B0
0

 And it acts in all directions

 Hence, the correct option is (d).

 4. Consider the following statements. [2009]

    (I) On a principal plane, only normal stress acts.

   (II)  On a principal plane, both normal and shear 

stresses act.

  (III)  On a principal plane, only shear stress acts.

 (IV)  Isotropic state of stress is independent of 

frame of reference.

 The TRUE statements are

 (a) I and IV (b) II

 (c) II and IV (d) II and III

 Solution: (a)

  Principal planes are those in which only normal 

stresses act and no shear stress.

  Isotropic state of stress is independent of frame of 

reference.

 Hence, the correct option is (a).

 5. The necessary and su#cient condition for a 

 surface to be called as a free surface is [2006]

 (a) no stress should be acting on it.

 (b) tensile stress acting on it must be zero.

 (c) shear stress acting on it must be zero.

 (d) no point on it should be under any stress.

 Solution: (c)

  Free surface is the surface subjected to constant-

normal stress and zero-tangential stress. The nec-

essary and su#cient condition for a surface to be 

called as ‘free surface’ is shear  stress acting on it 

must be 0.

 Hence, the correct option is (c).

 6. Mohr’s circle for the state of stress defined by

30 0

0 30









MPa  is a circle with [2006]

 (a) center at (0, 0) and radius 30 MPa

 (b) center at (0, 0) and radius 60 MPa

 (c) center at (30, 0) cand radius 30 MPa

 (d) center at (30, 0)and zero radius

 Solution: (d)

I =










= =

30 0

0 30

30 30
1 2

σ σMPa MPa

 Radius of the Mohr’s circle = 0

 Centre of Mohr’s circle = (30, 0)

A(30,0)

O

Point circle

(radius = 0)

 Hence, the correct option is (d).
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 7. The symmetry of stress tensor at a point in the 

body under equilibrium is obtained from [2005]

 (a) conservation of mass.

 (b) force equilibrium equations.

 (c) moment equilibrium equations.

 (d) conservation of energy.

 Solution: (c)

  The symmetry of stress tensor at a point in the 

body under equilibrium is obtained from moment 

equilibrium equations.

σ
x

σ
x

σ
y

σ
y

τ
xy

τ
xy

τ
yx

τ
yx

O

d/2
d/2

d/2

d/2

 Taking moments of all forces about the centre O,

τ τ τ τ

τ τ

yx yx xy xy

xy yx

d d d d

2 2 2 2
+ = +

=

 Hence, the correct option is (c).

 8. The components of strain tensor at a point in 

the plane strain case can be obtained by measur-

ing longitudinal strain in which of the following 

 directions? [2005]

 (a) Along any two arbitrary directions

 (b) Along any three arbitrary directions

 (c) Along two mutually orthogonal directions

 (d) Along any arbitrary direction

 Solution: (b)

  The components of strain tensor at a point in 

the plane strain case can be obtained by measur-

ing longitudinal strain along any three arbitrary 

 directions.

 Hence, the correct option is (b).

 9. Pick the incorrect statement from the following 

four statements. [2000]

 (a)  On the plane which carries maximum normal 

stress, the shear stress is 0.

 (b) Principal planes are mutually orthogonal.

 (c)  On the plane which carries maximum shear 

stress, the normal stress is 0.

 (d)  The principal stress axes and principal strain 

axes coincide for an isotropic material.

 Solution: (c)

  Maximum normal stress is equal to the major prin-

cipal stress. On the plane in which major principal 

stress acts, the shear stress is zero. Option ‘a’ is true.

  Principal planes are mutually orthogonal. θ
1
 = θ

2
 ± 

90°. Option ‘b’ is true

Maximum shear stress, τ
σ σ

max
=

−
1 2

2
  On the plane of maximum shear stress, the normal 

stress need not be zero. Option ‘c’ is false.

  For an isotropic material, principal stress axes and 

principal strain axes coincide. Option ‘d’ is true.

 Hence, the correct option is (c).

 10. Two perpendicular axes x and y of a section are 

called principal axes when [1999]

 (a)  Moments of inertia about the axes are equal 

(I
x
 = I

y
)

 (b) Product moment of inertia (I
xy

) is 0

 (c) Product moments of inertia (I
x
 × I

y
) is 0

 (d)  Moments of inertia about one of the axes is 

greater than the other

 Solution: (b)

  Principal axes are the two mutually perpendicular 

axes in which the product of inertia is equal to zero 

(I
xy

 = 0). Along the principal axes, one of the moment 

of inertia is maximum and the other is  minimum.

 Hence, the correct option is (b).

 11. If an element of a stressed body is in a state of 

pure shear with a magnitude of 80 N/mm2, the 

magnitude of maximum principal stress at that 

location is [1999]

 (a) 80 N/mm2  (b) 113.14 N/mm2 

 (c) 120 N/mm2  (d) 56.57 N/mm2 

 Solution: (a)

τ

τ

 Shear stress, τ = 80 N/mm2

 Normal stress in x direction, σ
x
 = 0

 Normal stress in y direction, σ
y
 = 0

  Maximum principle stress, 

σ
σ σ

σ σ τ
1

2 2

2

1

2
4=

+
+ − +

x y

x y
( )

         
σ

1
80= N/mm2

 Hence, the correct option is (a).



Chapter 2 Principal Stresses and Strains | 1.11

 12. Which of the following Mohr’s circles qualita-

tively correctly represents the state of plane stress 

at a point in a beam above the neutral axis, where it 

is subjected to combined shear and bending com-

pressive stresses? [1993]

 (a) 

σ (Tensile)

τ

 (b) 

σ (Tensile)

τ

 (c) 

σ (Tensile)

τ

 (d) 

σ (Tensile)

τ

 Solution: (c)

A

B
C

  Point A lies above the neutral axis which is subjected 

to combined shear and bending compressive stress.

σ  (Tensile)

Mohr crcle for point A 

τ

  Point B lies on the neutral axis which is subjected 

to only shear stress.

σ  (Tensile)

Mohr crcle for point B

τ

  Point C lies below the neutral axis which is subjected 

to combined shear and bending tensile stresses.

τ

σ  (Tensile)

Mohr crcle for point C

 Hence, the correct option is (c).

 13. A failure theory postulated for metals is shown in a 

two dimensional stress plane. The theory is called

 [1991]

 (a) Maximum Distortion Energy Theory

 (b) Maximum Normal Stress Theory

 (c) Maximum Shear Stress Theory

 (d) Maximum Strain Theory

σ
1

σ
2

 Solution: (c)

  The failure theory and associated failure planes are 

shown in figures.

 1. Maximum normal stress theory

Rectangle

σ
1

σ
1

σ
2

σ
2
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 2. Maximum strain theory

Rhombus

σ
1

σ
1

σ
2

σ
2

 3. Maximum shear stress theory

Hexagon

σ
1

σ
1

σ
2

σ
2

 4.  Maximum strain energy theory/maximum shear 

strain energy theory/distortion energy theory.

Ellipse

σ
1

σ
1

σ
2

σ
2

 Hence, the correct option is (c).

TWO-MARKS QUESTIONS

 1. For the state of stresses (in MPa) shown in the 

 figure, the maximum shear stress (in MPa) is

 [2014] 

4

4

22

4

 Solution: 5

σ
x
 = 2 MPa

 

σ
x
 = 2 MPa

 

σ
y
 = 4 MPa

 

σ
y
 = 4 MPa

 

τ  = 4 MPa
 

 The stresses acting on an element are:

 σ σ τ
x y

C T= = =2 4 4MPa MPa ( ) MPa( ), ,

 Maximum shear stress, τ
σ σ

max
=

−
1 2

2

                                             
= − +

1

2
42 2( )σ σ τ

x y

  
= − − + × = + =

1

2
2 4 4 4

1

2
36 64 52 2( ) MPa

 Hence, the answer is 5.

 2. The state of 2D-stress at a point is given by the fol-

lowing matrix of stress [2013]

σ σ

σ σ

xx xy

xy yy












=










100 30

30 20
MPa

  What is the magnitude of maximum shear stress in 

MPa?

 (a) 50 (b) 75

 (c) 100 (d) 110

 Solution: (a)

  The state of 2D stress at a point is given by

σ σ

σ σ

xx xy

xy yy

MPa











=










100 30

30 20

  Maximum shear stress,

 
τ

σ σ σ σ τ

max

( )
= ±

−
=

−
1 2

2 2

2

4

2

x y

         

= − + × = +

= × =

1

2
100 20 4 30

1

2
6400 3600

1

2
100 50

2 2( )

N/mm2

 Hence, the correct option is (a).



Chapter 2 Principal Stresses and Strains | 1.13

 3. If a small concrete cube is submerged deep in still 

water in such a way that the pressure exerted on all 

faces of the cube is p, then maximum shear stress 

developed inside the cube is [2012]

 (a) 0 (b) 
p

2
 (c) p (d) 2p

 Solution: (a)

p p

p

p
p

p

σ σ σ
x y z

p= = =

  Since, only normal forces are acting, the shear 

stress τ = 0.

 
τ

σ σ σ σ

max
=

−
=

−
=

1 2

2 2
0

  Hence, the correct option is (a).

 4. The major and minor principal stresses at a point 

are 3 MPa and −3 MPa, respectively. The maxi-

mum shear stress at the point is [2010]

 (a) 0 (b) 3 MPa

 (c) 6 MPa (d) 9 MPa

 Solution: (b)

 Major principal stress, σ
1
 = 3 MPa

 Minor principal stress, σ
3
 = −3 MPa

  Maximum shear stress,

τ
σ σ

max

( )
=

−
=

− −
=

1 3

2

3 3

2
3 MPa

 Hence, the correct option is (b).

 5. An axially loaded bar is subjected to a normal 

stress of 173 MPa. The shear stress in the bar is

 [2007]

 (a) 75 MPa (b) 86.5 MPa

 (c) 100 MPa (d) 122.3 MPa

 Solution: (b)

σ
1 σ

1
= 173 MPa

 Normal stress in x direction, σ
1
 = 173 MPa 

 Normal stress in y direction, σ
1
 = 0

  Maximum shear stress,

τ
σ σ

max
.=

−
=

−
=

1 2

2

173 0

2
86 5 MPa

 Hence, the correct option is (b).

 6. If principal stresses in a two-dimensional case are 

−10 MPa and 20 MPa respectively, then maximum 

shear stress at the point is [2005]

 (a) 10 MPa (b) 15 MPa

 (c) 20 MPa (d) 30 MPa

 Solution: (b)

 Major Principal stress, σ
1
 = 20 MPa

 Minor Principal stress, σ
3
 = −10 MPa

 Maximum shear stress,τ
σ σ

max
=

−
1 3

2

 
τ

max

( )
=

− −
=

20 10

2
15 MPa

 Hence, the correct option is (b).

 7. In a two dimensional stress analysis, the state of 

stress at a point is shown below. If s = 120 MPa and 

t = 70 MPa, then s
x
 and s

y
 are respectively [2004]

A

AB = 4

BC = 3

AC = 5

B

y

C

σ

σ
y

σ
x

τ

x

 (a) 26.7 MPa and 172.5 MPa

 (b) 54 MPa and 128 MPa

 (c) 67.5 MPa and 213.3 MPa

 (d) 16 MPa and 138 MPa

 Solution: (c)

A

4

3

5

B

y

C

σ

σ
y

σ
x

θ

τ

x



1.14 | Strength of Materials

 

σ τ

θ θ θ

= =

= = =

120 70

3

5

4

5

3

4

MPa MPa

sin , cos , tan

 Considering the horizontal equilibrium,

σ σ θ τ θ

σ

σ

x

x

x

AB AC= −

× = × − ×










=

( cos sin )

.

4 5 120
4

5
70

3

5

67 5 MPa

 Considering the vertical equilibrium,

 

σ σ θ τ θ

σ

σ

y

y

y

BC AC= +

× = × + ×










=

( sin cos )

.

3 5 120
3

5
70

4

5

213 3 MPa

 Hence, the correct option is (c).

 8. The state of two dimensional stress acting on a 

concrete lamina consists of a direct tensile stress, 

σ
x
 = 1.5 N/mm2, and shear stress τ = 1.20 N/mm2, 

which cause cracking of concrete. Then the tensile 

strength of the concrete in N/mm is [2003]

 (a) 1.5 (b) 2.08

 (c) 2.17 (d) 2.29

 Solution: (c)

τ

τ  = 1.2 N/mm2

σ
x

σ
x
 = 1.5 N/mm2

 Direct tensile stress, σ
x
 = 1.5 N/mm2

 Shear stress, τ = 1.20 N/mm2

  The major and minor principle stresses are given 

by

σ
σ σ

σ σ τ
1 3

2 2

2 2

2

1

2
4

1 5

2

1

2
1 5 4 1 2

0 75
1

2
2

,
( )

.
( . ) ( . )

. .

=
+

± − +

= ± +

= ±

x y

x y

225 5 76 0 75 1 42

0 75 1 42 2 17
1

+ = ±

= ± =

. . .

. . .σ N/mm2

 Hence, the correct option is (c).

 9. A frame ABCD is supported by a roller at A and is 

on a hinge at C as shown in the figure: [2000]

L/2 L/2 L/2

P

D

C
P

L

A

 The reaction at the roller end A is given by

 (a) P (b) 2 P

 (c) 
P

2
 (d) 0

 Solution: (d)

 Let R
A
 = Reaction of the roller support A.

 Taking moments of all forces about the hinge C,

 

∑ = ⇒ − + =

=

M R L P
L

P
L

R

c A

A

0
2 2

0

0

L/2 L/2 L/2
P

D

R
A

C

P

L

A

B

 Hence, the correct option is (d).



 Solution: (d)

Cantilever beam curved in plain

A

B

Cy

  When the cantilever beam cured in plan is subject-

ed to transverse load, the longitudinal axis of the 

beam does not coincides with the centre of gravity 

of the transverse loads and hence the beam at any 

section is subjected to torsion in addition to shear 

force and bending moment.

 Hence, the correct option is (d).

 3. In a real-beam, at an end, the boundary condi-

tion of zero-slope and zero-vertical displacement 

exists. In the corresponding conjugate beam, the 

boundary conditions at this end will be [1992]

 (a) shear force = 0 and bending moment = 0.

 (b) slope = 0 and vertical displacement = 0.

 (c) slope = 0 and bending moment = 0.

 (d) shear force = 0 and vertical displacement = 0.

 Solution: (a)

  The slope in a real-beam at a point is equal to the 

shear force in the conjugate beam at the same point.

  The vertical deflection in a real-beam at a point is 

equal to the bending moment in conjugate beam at 

the same point.

 Hence, the correct option is (a).

Shear Force and Bending 

Moment

 1. If the shear force at a section of beam under bend-

ing is equal to 0 then the bending moment at the 

section is ______________. [1995]

 (a) zero (b) maximum

 (c) minimum (d) constant

 Solution: (d)

  The relationship between shear force and bending 

moment is

F
dM

dx

 For zero, shear force at a section,

dM

dx
0

 Integrating wrt x, M = constant.

 Hence, the correct option is (d).

 2. A cantilever beam curved in plan is subjected to 

lateral loads will develop at any section [1994]

 (a) bending moment and shearing force.

 (b) bending moment and twisting moment.

 (c) twisting moment and shearing force.

 (d)  bending moment, twisting moment and shear-

ing force.

ONE-MARK QUESTIONS

Chapter 3
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 4. A beam having a double cantilever attached at mid 

span is shown in the figure. The nature of force in 

beam ab is [1991]

        

a

e d

P
C

P

g

b90°

 (a) Bending and shear

 (b) Bending, shear and torsion

 (c) Pure torsion

 (d) Torsion and shear

 Solution: (a)

a

a

a

b

p

p

p

p

g

c

e d

f

b

b
2 P

T = pa

T = pa

  The beam ab is subjected to shear force and bend-

ing moment.

 Hence, the correct option is (a).

TWO-MARKS QUESTIONS

 1. The values of axial stress (σ) in kN/m2, bending 

moment (M) in kNm, and shear force (V) in kN 

acting at point P for the arrangement shown in the 

figure are respectively, [2014]

   

P Q

Frictionless

pulley

50 kN

Cable

Beam
(0.2 m × 0.2 m)

3 m

 (a) 1000, 75, and 25.

 (b) 1250, 150, and 50.

 (c) 1500, 225, and 75.

 (d) 1750, 300, and 100.

 Solution: (b)

A B

50 kN 50 kN

50 kN

3 m

Free body diagram of the beam

 Size of the beam = ×0 2 0 2. .m m

 Axial force in beam, 

F = 50 kN (C)

 Axial stress at point P, 

σ = =
×

=
F

A

50

0 2 0 2
1250

. .
kN/m2

 Bending moment at P,

M
P
= × =50 3 150 kNm

 Shear force at P, Vp = 50 kN

 Hence, the correct option is (b).

 2. For the cantilever bracket, PQRS loaded as shown 

in the figure (PQ = RS = L, and, QR = 2 L), which 

of the following statements is FALSE? [2011]

W

P

Q

R

S
Fixed

2 l

f

 (a)  The portion RS has a constant twisting mo-

ment with a value of 2 WL.

 (b)  The portion QR has a varying twisting mo-

ment with a maximum value of WL.

 (c)  The portion PQ has a varying bending moment 

with a maximum of WL.

 (d) The portion PQ has no twisting moment.
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 Solution: (b)

     

Q

Q

Q

Q

R

R

R

w

w

w

w

P

P

w

w

w

w

w

w

2 WL

2 WL

2 WL

WL

S

WL

WL

T = WL T = WL

T = WL T = WL

T = 2 WL

T = 2 WL

  Bar PQ: No twisting moment, varying BM with 

maximum value of WL.

  Bar QR: Constant twisting moment of WL, varying 

bending moment with a maximum value of 2 WL.

  Bar RS: Constant twisting moment of 2 WL, vary-

ing bending moment with a maximum value of 2 

WL.

 Hence, the correct option is (b).

 3. Two people weighing W each are sitting on a plank 

of length L floating on water at L/4 from either 

end. Neglecting the weight of the plank, the bend-

ing moment at the centre of the plank is [2010]

 (a) 
WL

8
 (b) 

WL

16

 (c) 
WL

32
 (d) 0

 Solution: (d)

       

W

A B E C D

W

L

4

L

2

L

4

  The plank will be in equilibrium due to the buoy-

ant force acting from the bottom.  Taking the verti-

cal equilibrium of plank,

W W wL w
W

L
+ = = ↑; ( )

2

 BM at the centre of the plank,

BM
W

L

L L
W

L
E
= −

2

2 4 4
,

                           
= − =

WL WL

4 4
0

 Hence, the correct option is (d).

 4. For the simply supported beam of length L, sub-

jected to a uniformly distributed moment M kN-m 

per unit length as shown in the figure, the bending 

moment (in kN-m ) at the mid-span of the beam is

 [2010]

L

M kN-m per unit length

 (a) Zero (b) M

 (c) ML (d) M/L

 Solution: (a)

A B

C
L

M kN-m per unit length

 Taking moments of all forces about the hinge A,

    

∑ = ⇒ − = = ↑

∑ = ⇒ + = = − = ↓

M M L R L R M

V R R R M M

A B B

A B A

0 0

0 0

. . ; ( )

; ( )

 Bending moment at mid span,

M M
L

M
L

C
= − + =

2 2
0

 The bending moment of any point in the beam is 0.

 Hence, the correct option is (a).

 5. Group-I gives the shear force diagrams and 

Group-II gives the diagrams of beams with sup-

ports and loading shown in the figure. Match the 

Group-I with Group-II [2009]
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Group I Group II

(a) 
q/2

q/4
P

q/4

q/2

1. 

f

q/unit length q/unit length

1/4 1/4

(b) 

q/4

q/4
Q

2. 

f

q/unit length

1/4 1/4

(c) 
q/2

q/2 q/2

q/2

q/2

q/2
R

3. 

f1/4

q/2 q/2

1/4

(d) 
q/2

q/2
S

4. 

f1/4

q/2 q/2
q

1/4

 (a) P: 3; Q: 1; R: 2; S: 4

 (b) P: 3; Q: 4; R: 2; S: 1

 (c) P: 2; Q: 1; R: 4; S: 3

 (d) P: 2; Q: 4; R: 3; S: 1

 Solution: (a)

Loading diagram

SFD

SFD

P.

Q.

−
−

+
+

q/mq/mq/m

ℓ

4

ℓ

4
ℓ

ql

2

ql

2

ql

4

ql

4

ql

4

−

+

Loading diagram

ℓ

4

ℓ

4
ℓ

w/m w/m

ql/4

Loading diagram

Loading diagram

SFD

R.

SFDS.

−

−

−

+ +

+

q

2

q

2

q

2

q

2

q

2

q

2

q

2

q

2

q

2

q

2

q

2

q

2

q

2

q

2

q

2

ℓ

4

ℓ

4
ℓ

q

q q

Loading diagram

ℓ

4

ℓ

4
ℓ

 Hence, the correct option is (a).
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 6. A simply supported beam AB has the bending 

moment diagram as shown in the figure. The beam 

is possibly under the action of following loads:

 [2006]

L L L

M

M

M

A C D B

 (a) Couples of M at C and 2M at D.

 (b) Couples of 2M at C and M at D.

 (c)  Concentrated loads of M/L  at C and 2M/L at D.

 (d)  Concentrated load of M/L at C and couple of 

2 M at D.

 Solution: (a)

  The shear force and bending loading diagrams cor-

responding to the given bending moment diagram 

are shown in the figure.

        

L L L

M

M 2 M
BMD

SFD

Loading diagram

M

M

A

A

C

C

D

D

+

+

−−

B

B

L

−M

L

M
L

M

L

M

 Hence, the correct option is (a).

 7. The bending moment diagram for a beam shown in 

the figure. The shear force at sections ‘aa’ and ‘bb’ 

respectively are of the magnitude [2005]

       

100 kNm

200 kNm

1 m1 m0.50.5

a

a′

b

b′

 (a) 100 kN, 150 kN (b) zero, 100 kN

 (c) zero, 50 kN (d) 100 KN, 100 kN

 Solution: (c)

       

100 kNm

200 kNm

1 m1 m

BAB

0.5 m0.5 m

a

a′

b

b′

  Shear force is the rate of change of bending mo-

ment. At section aa′, the bending moment to the 

left and right is constant. Hence, shear force at aa′ 
is 0.

 Shear force at bb′ =
−

× =
200 100

2
1 50 kN

 Shear force at aa′ = 0

 Shear force at bb′ = 50 kN

 Hence, the correct option is (c).

 8. Group-I shows di"erent loads acting on a beam 

and Group-II shows di"erent bending moment dis-

tributions in the figure. Match the load with the 

corresponding bending moment diagram. [2003]

Group I Group II

P 1. 

Q 2. 

R 3. 

S 4. 

5. 

 (a) P: 4; Q: 2; R:1; S: 3   (b) P: 5; Q: 4; R: 1; S: 3

 (c) P: 2; Q: 5; R: 3; S: 1  (d) P: 2; Q: 4; R: 1; S: 3

 Solution: (d)

1/4

Beam

BMD

P
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Free body diagrams

A
B

B

C

W

W
W

W a

W a

W a

  Member AB is subjected to shear force and bend-

ing moment.

  Member BC is subjected to axial load and Bending 

moment.

 Hence, the correct option is (a).

 10. The bending moment (in kNm units) at the mid-

span location X in the beam with overhangs shown 

in the figure is equal [2001]

x

10 kN

1 m 1 m 1 m 1 m

Spring support

 (a) 0 (b) −10

 (c) −15 (d) −20

 Solution: (c)

      

x

10 kN

1 m 1 m 1 m 1 m

20 kN

A

A

B

B

10 kN20 kN

 Taking moments of all forces about the support B,

∑ = ⇒ − × + × + × =

= ↑

M R

R

B A

A

0 20 3 2 10 1 0

25 kN( )

  Bending moment at X = −20 × 2 + 25 × 1 = 

−15 kNm (Hogging)

 Hence, the correct option is (c).

Beam

Beam

beam

BMD

BMD

BMD

BMD

Q

R

S

 Hence, the correct option is (d).

 9. For the loading given in the figure, two statements 

(I and II) are made. [2002]

D C E

B A

W

⇐

   I.  Member AB carries shear force and bending 

 moment.

 II. Member BC carries axial load and shear force.

 Which of the following is true?

 (a) Statement I is true but II is false.

 (b) Statement I is false but II is true.

 (c) Both statements I and II are true.

 (d) Both statements I and II are false.

 Solution: (a)

Free body diagrams

AB

W

D C E



Simple Bending Theory

Chapter 4

ONE-MARK QUESTIONS

 1. The first-moment of area about the axis of bend-

ing for a beam cross-section is ______________.

 [2014]

 (a) section modulus

 (b) moment of inertia

 (d) shape factor

 (c) polar moment of inertia

 Solution: (a)

  First moment of area is based on mathematical 

construct moments in metric spaces. First moment 

of area is equal to the summation of the product of 

area and  its distance from an axis. A x
i i

i

∑ ⋅. It is a 

measure of the distribution of the area of a shape 

in relationship to an axis. 

  Section Modulus: It is a direct measure of the 

strength of the beam.

Z
I

y

  I: Moment of inertia of the section about the neu-

tral axis.

 y: Distance of extreme fibre from the neutral axis.

  Section modulus is the first moment of area about the 

axis of bending for a beam cross section.  Moment of 

Inertia: Moment of Inertia about an axis is defined 

as the sum of the product of the area and square of 

its distance from the axis under consideration. 

I y dt I A x
x i i

i

= =∫ ∑2 2(or)

  Moment of Inertia is a measure of an objects re-

sistance to changes to in rotation direction. 

  Moment of inertia is the capacity of a cross section 

to resist bending. 

  Polar moment of Inertia: Polar moment of Inertia 

about an axis perpendicular to two mutually per-

pendicular axes is equal to the sum of moments of 

inertia about the axes. 

  Shape factor: Shape factor is defined as the ratio 

of plastic moment to yield moment. 

S
M

M

Z

Z

Z

Z

P

y

y P

y

P
= = =

σ

σ

 Hence, the correct option is (a).

 2. The dimensions for the flexural rigidity of a beam 

element in mass (M), length (L) and time (T) is 

given by [2000]

 (a) MT −2 (b) ML3T −2

 (c) ML−1T−2 (d) ML−1T2

 Solution: (b)

 Flexural rigidity = EI kN-m2

 Dimensions for EI = MLT −2L2

                                = ML3T−2

 Hence, the correct option is (b).

 3. The basic assumption of plane sections normal to 

the neutral axis before bending remaining plane 

and normal to the neutral axis after bending, leads 

to [1995]

 (a) uniform strain over the beam cross-section.

 (b) uniform stress over the beam cross-section.

 (c) linearly varying strain over the cross-section.

 (d)  stresses, which are proportional to strains at 

the cross-section.
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 Solution: (c)

  The basic assumption ”plane sections normal to 

the neutral axis before bending remaining plane 

and normal to the neutral axis after bending” leads 

to linearly varying strain over the cross section.

 Hence, the correct option is (c).

TWO-MARKS QUESTIONS

 1. The “plane section remains plane” assumption in 

bending theory implies [2013]

 (a) strain profile is linear

 (b) stress profile is linear

 (c) both strain and stress profile are linear

 (d) shear deformations are neglected

 Solution: (a)

  The plane section remains plane assumption in 

bending theory implies strain profile is linear.

AN

Cross section Strain diagram

 Hence, the correct option is (a).

 2. The following statements are related to bending of 

beams: [2012]

  The slope of the bending moment diagram is equal 

to the shear force.

  The slope of the shear force diagram is equal to the 

load intensity.

  The slope of the curvature is equal to the flexural 

rotation.

  The second derivative of the deflection is equal to 

the curvature.

 The only FALSE statement is

 (a) I (b) II

 (c) III (d) IV

 Solution: (c)

  Slope of bending moment diagram is equal to 

shear force.

dM

dx
F

 I. Statement I is True

  II. Slope of shear diagram = load intensity,

dF

dx
w.

 Statement II is True

  III. Slope of the deflected curve is not equal to the 

flexural rotation.

  Slope of the deflected curve is equal to slope. 

Statement III is False

IV.         
EI

d y

dx
M R d dx

2

2
= − =. θ

                      

d

dx

d y

dx R

θ
= =

2

2

1

  The second derivative of the deflection is equal to 

the curvature.

 Statement IV is True

 Hence, the correct option is (c).

 3. A beam with the cross-section shown in the figure, 

is subjected to appositive bending moment (caus-

ing compression at the top) of 16 kN-m acting 

around the horizontal axis. The tensile force acting 

on the hatched area of the cross-section is [2006]

100

50

50

7.5

25

 (a) 0 (b) 5.9 kN

 (c) 8.9 kN (d) 17.8 kN

 Solution: (c)

100

50

50

A

7.5

25

+

−
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 Maximum bending stress,

σ
max max

=
M

I
y

 Maximum bending moment,

M = 16 kNm

 Moment of inertia of the section about NA,

I = = ×
100 150

12
28 125 16

3
6( )

. mm4

 Extreme distance from NA, y = 75 mm

σ
max

.
.=

×

×

× =
16 10

28 125 10
75 42 67

6

6
N/mm2

 Bending tensile stress at A,

σ = × =
42 67

75
25 14 22

.
. N/mm2

 Tensile force on the hatched area,

T = Cross sectional area × Average stress

= × × = × ≈50 25
14 22

2
8 888 10 8 93.
. .N kN

 Hence, the correct option is (c).

 5. A homogeneous simply supported prismatic beam 

of width B, depth D and span L is subjected to a 

concentrated load of magnitude P. The load can 

be placed anywhere along the span of the beam. 

The maximum flexural stress developed in beam is

 [2004]

 (a) 
2

3 2

PL

BD
 (b) 

3

4 2

PL

BD

 (c) 
4

3 2

PL

BD
 (d) 

3

2 2

PL

BD

 Solution: (d)

     

P

D

B

  Maximum bending moment will be developed at 

midspan, when the concentrated load P is placed 

at midspan.

 Maximum bending moment,

M
PL

4

 Maximum flexural stress,

σ =
M

I
y

 Moment of inertia about NA,

I
BD3

12

 Extreme fibre distance from NA,

               y
D

2

σ
max

= =

PL

BD

D PL

BD

4

12

2

3

23 2

 Hence, the correct option is (d).

 6. A simply supported beam of uniform rectangular 

cross-section of width b and depth h is subjected to 

linear temperature gradient, 0° at the top and T ° at 

the bottom, as shown in the figure. The coe#cient 

of linear expansion of the beam material is α. The 

resulting vertical deflection at the mid span of the 

beam is [2003]

Temp gradient

T°

L

0°

 (a) 
Th

L

2

8
upward

 (b) 
TL

h

2

8
upwards

 (c) 
Th

L

2

8
downwards

 (d) 
TL

h

2

8
downwards
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 Solution: (d)

 Average change in temperature = T/2

     

L

L

L + 8L

T°C

0°C

Temperature

gradient

 Compression in the top fibre = L
T

α
2

 Elongation in the bottom fibre = L
T

α
2

 Temperature strain, e
L T

L

T
0

2 2
= =

α α

 The deflection at mid point is downward.

 The bending equation is
M

I y

E

R
= =
σ

 Curvature, 
1

R Ey
=
σ

                        

= = = =










Strain

y

e

h

T

h
y

h2

2

0 α .
∵

 From property of circle,

       

L L
R

L
R

2 2
2

4
2

2
2

= −

= −

δ δ

δ δ

( )

δ
α α

= = =
L

R

L T

h

TL

h

2 2 2

8 8 8
( )downwards

2
δ

2
δ

(2R − δ)

(OR)

L

δ

Q

b

0°

T°C

l

x 1

2

1

2

 Vertical deflection at midspan,

δ = ∫
Mm

EI
dx

 Bending equation is

                   
M

I y

E

R
= =
σ

1 2
0

R

M

EI Ey y

e

h
= = = =

σ strain

 Temperature strain,

e
L T

L

T
0

2 2
= =

. .

.

.α α

 Therefore,

1

R

M

EI

T

h
= =

α

 Moment at a distance x due to unit load,

        m x
1

2

δ
α α α α

= =   = =∫2
2 2 2 8

0

2

2

0

2
2

2T

h

x
dx

T

h
x

T

h
d

TL

h

d
d

/
/

 Hence, the correct option is (d).

 7. The maximum bending stress induced in a steel 

wire of modulus of elasticity 200 kM/mm2 and 

diametre 1 mm, when wound on a drum of diame-

tre 1 m is approximately equal to [1992] 

 (a) 50 N/mm2 (b) 100 N/mm2

 (c) 200 N/mm2 (d) 400 N/mm2
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 Solution: (c)

 Modulus of elasticity of steel, E = 200 kN/mm2

 Diameter of the wire, d = 1 mm2

  Diameter of drum over which wire is winding = 1 m

 Radius of the bent wire, R = 0.5 m

 Extreme fibre distance, y = 0.5 mm

Drum 1 m dia

1 mm wire

 Bending equation is

M

I y

E

R
= =
σ

 Maximum bending stress,

                 σ =
E

R
y.

σ =
×

×

× =
200 10

0 5 10
0 5 200

3

3.
. N/mm2

 Hence, the correct option is (c).



the magnitude of the shear stress (in N/mm2) in the 

web at its junction with the top flange ________.

 [2013]

 Solution: 71.12

 Width of flange, b = 50 mm

 Thickness of flange, t = 10 m

 Depth of web, d
w
 = 100 mm

 Thickness of web, t
w
 = 10 mm

 Shear force, F = 100 kN

       

t = 10 mm

t = 10 mm

d
w
 = 100 mm

t
w
 = 10 mm

N A

b = 50

50 mm

Cross section

 Shear stress at any distance from neutral axis,

τ =
F Ay

Ib

( )

  Moment of the area above the point considered 

about neutral axis, 

( )Ay = × × = ×50 10 55 275 102 mm3

Shear Stresses in Beams

 1. For a given shear force across a symmetrical I 

 section, the intensity of shear stress is maximum 

at the [1991, 1994]

 (a) extreme fibres.

 (b) centroid of the section.

 (c)  at the junction of the flange and the web, but 

on the web.

 (d)  at the junction of the flange and the web, but 

on the flange.

 Solution: (b)

  The shear stress distribution across the cross section of 

a symmetrical I section is shown in figure. The maxi-

mum shear stress occurs at centroid of the section.

       

N A

Cross section Shear stress distribution

 Hence, the correct option is (b).

TWO-MARKS QUESTIONS

 1. A symmetric I-section (with width of each flange = 

50 mm, thickness of each flange = 10 mm, depth of 

web = 100 mm, and thickness of web = 10 mm) of 

steel is subjected to a shear force of 100 kN. Find 

ONE-MARK QUESTION

Chapter 5
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  Moment of inertia of the section about neutral 

axis,

      
I =

×
+

×
+ × ×











= × + ×

10 100

12
2

50 10

12
50 10 55

833 3 10 3033 3 10

3 3
2

3 3. . == ×3866 6 103. mm4

 Width of section under consideration, b = 10 mm

τ =
× × ×

× ×

=
100 10 275 10

3866 6 10 10
71 12

3 2

3.
. N/mm2

 Hence, the answer is 71.12 N/mm2.

 2. The shear stress at the neutral axis in a beam of 

triangular section with a base of 40 mm and height 

20  mm, subjected to a shear force of 3 kN is

 [2007]

 (a) 3 MPa (b) 6 MPa

 (c) 10 MPa (d) 20 MPa

 Solution: (c)

 Shear stress at neutral axis,τ NA
= ?

 Base of triangular section, B = 40 mm

 Height of triangular section, H = 20 mm

 Shear force, F = 3 kN

  Distance of centroid from the apex

= × =
2

3
20 13 33. mm

  Width of the section at the level where shear stress 

is desired is given by

40

20 13 33
26 67

b
b

.
; . mm

 Shear stress:τ =
FAy

I b.

  Moment of the area above the section under con-

sideration about NA,

Ay = × × × × =
1

2
26 67 13 33

1

3
13 33 789 8. . . . mm3

b

H = 20 mm

B = 40 mm

=13.33 mm

2
3

h =     × 20

 Moment of inertia of the section about NA,

                    I =
×

=
40 20

36
8888 9

3

. mm3

τ
NA

2N/mm=
× ×

×
=

3 10 789 8

8888 9 26 67
10

3 .

. .

 or

τ τ
NA avg

F

A

=

= =
×

× ×

=

4

3

4

3

4

3

3 10

1

2
40 20

10
3

N/mm2

 Hence, the correct option is (c).

 3. T-section of a beam is formed by gluing wooden 

planks as shown in the figure. If this beam trans-

mits a constant vertical shear force of 3000 N, the 

glue at any of the four joints will be subjected to a 

shear force (in kN per metre length) of [2006]

50

50

50

200

75

 (a) 3.0 (b) 4.0

 (c) 8.0 (d) 10.7

 Solution: (b)

50

50

50

200
N A

200

75
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 Shear stress,τ =
FAy

Ib

 Shear flow, q b
F Ay

I
= =τ

( )

 Shear force, F = 30000 N

 Moment of inertia of the section about NA,

I =
×

+
×

+ × ×










50 300

12
2

150 50

12
150 50 125

3 3
2

          = + × = ×( . . ) .1 125 2 375 10 3 5 108 8 mm4

 For any of the four joints,

Ay = × × =75 50 125 468750 mm3

q =
×

×

= =
3000 468750

3 5 10
4 0 4 0

8.
. .N/mm kN/m

 Hence, the correct option is (b).

 4. If a beam of rectangular cross-section is subjected 

to a vertical shear force V, the shear force car-

ried by the upper one-third of the cross-section is

 [2006]

 (a) zero (b) 
7V

27

 (c) 
8V

27
 (d) 

V

3

 Solution: (b)

N

y

A

b

d

dy
d

S

  Let y be the distance of point under consideration 

from the neutral axis.

 Shear stress,

     τ =
FAy

Ib

τ =

−










+








= −











V
d

y b
d y

Ib

V

I

d
y

2

2

2

2 4

2
2

/

 Shear force carried beyond y distance from NA,

     dF bdy= τ

       

= −










= −








 = −∫

Vb

I

d
y dy

F
Vb

I

d
y dy

Vb

I

d
y

y

d

d

2 4

2 4 2 4

2
2

2
2

6

2
2 3

/

/

33

2 8 24 24 648 2
12

28

6

6

2

3 3 3 3

3











= − − +








 = ×

d

d

Vb

I

d d d d Vb

bd

/

/

. 448

7

27

3.d

F V=

 Hence, the correct option is (b).



ONE-MARK QUESTIONS

 Statement for Linked Questions 1 and 2:

  A two span continuous beam having equal spans 

each of length L is subjected to a uniformly dis-

tributed load w per unit length. The beam has con-

stant flexural rigidly.

 1. The reaction at the middle support is _________.

 [2007]

 (a) wL  (b) 
5

2

wL

 (c) 
5

4

wL
 (d) 

5

8

wL

 Solution: (c)

LL

A B

w/m

C

  Since, the supports at A, B, and C are at the same 

level, the deflection at supports is equal to 0.

  Downward deflection at B due to u.d.l removing 

the support at B,

δ
B

w L

EI
1

45

384

2
=

( )

  Upward deflection due to support reaction at B re-

moving the u.d.l on the Beam,

δ
B

B
R L

EI
2

4
1

48

2
=

( )

  δ δ δ
B B B
= − =

1 2
0

5

384

2 1

48

24 3
w L

EI

R L

EI

B( ) .( )

  R w L R wL
B B
= = ↑

5

8
2

5

4
; ( )

 Hence, the correct option is (c).

 2. The bending moment at the middle support is

 (a) 
wL2

4
 (b) 

wL2

8

 (c) 
wL2

12
 (d) 

wL2

16

 Solution: (b)

  Since, the beam is loaded symmetrically, the reac-

tions at A and C is given by

R R

w L wL
wL

A C
= =

−

=

2
5

4

2

3

8

 Bending moment at B,

M wLL wL
L wL

B
= − = −

3

8 2 8

2

             M
wL

B

2

8
(Hogging)

 Hence, the correct option is (b).

 3. The slope of the elastic curve at the free end of a 

cantilever beam of span L and with flexural rigid-

ity EI, subjected to uniformly distributed load of 

intensity w is  [1999]

De!ection of Beams

Chapter 6
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 (a) 
wL

EL

3

6
 (b) 

wL

EL

3

3

 (c) 
wL

EL

4

8
 (d) 

wL

EL

3

2

 Solution: (a)

A
θ

B

B

B1

w/m

 Slope at the free end of cantilever,

θ
B

wL

EI
=

3

6

 Hence, the correct option is (a).

 4. A cantilever beam is shown in the figure. The 

moment to be applied at free end for 0 vertical 

deflection at that point is [1998]

2 m

9 kn

 (a) 9 kNm clockwise

 (b) 9 kNm anticlockwise 

 (c) 12 kNm clockwise

 (d) 12 kNm anticlockwise 

 Solution: (c)

9 kN

A B
δ

A

A1

 Downward deflection due to load at A,

δ
A

W L

EI EI EI
=

×
=

×
=

3 3

3

9 2

3

24

  A moment M is to be applied at the free end so as 

to give upward deflection as shown in the figure. 

A BM

A1

  Upward deflection at A due to clockwise moment M,

                          ′ =δ
A

ML

EI

2

2

=
×

=
M

EI

M

EI

2

2

22

 Given

δ δ δ
A A A

EI

M

EI
= ⇒ + ′ = − =0 0

24 2
0;

 M = 12 kNm clockwise. 

 Hence, the correct option is (c).

 5. A cantilever beam of span L is loaded with a con-

centrated load P at the free end. Deflection of the 

beam at the free end is [1997]

 (a) 
PL

EI

3

48
 (b) 

5

384

3PL

EI

 (c) 
PL

EI

3

3
 (d) 

PL

EI

3

6

 Solution: (c)

L

A B

P

 Deflection at free end, 

δ
B

PL

EI
=

3

3

 Hence, the correct option is (c).

 6. The deflection of cantilever beam at free end B 

applied with a moment M at the same point is 

 [1996]

A

L

M

B

 (a) 
Ml

EI

2

 (b) 
Ml

EI

2

2

 (c) 
Ml

EI

2

3
 (d) 

Ml

EI

2

4
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points on the elastic curve is equal to area of 
M

EI
 

diagram between those two points under consid-

eration. 

       θ = Area of 
M

EI
 diagram between A and C

                 

= =

=

M

EI

L ML

EI

ML

EI

2 2

2θ

 Hence, the correct option is (a).

 8. A simply supported beam of span length L and 

flexural sti"ness EI has another spring support at 

the centre of sti"ness K as shown in figure. The 

central deflection of the beam due to a central con-

centrated load of P would be [1993]

L/2 L/2

P

El

K

 (a) 
PL

EI KL

3

348
 (b) 

P

EI L
K

( / )48 3

 (c) 
PL

EI

P

K

3

48


















  (d) 

P

EI L
K

48 3/

 Solution: (a)

P

El
A B

C
K

2
L

2
L

 Let R be the reaction of the spring. 

  K: Sti"ness of spring, which is equal to the load 

corresponding to unit deflection. =
R

δ

A

P

C

R

B

 Solution: (b)

A

L

M

B

−

diagram

M

EI

M

EI

M

EI

  Deflection at B = Moment of the area of 
M

E
 

 diagram between A and B about B

δ
B

M

EI
L

L ML

EI
= =

2 2

2

 Hence, the correct option is (b).

 7. M − θ relationship for a simply supported beam is 

given by (shown in the figure) [1996]

A

M

θ θ

M

B

l

 (a) 
Ml

EI
= 2θ  (b) 

Ml

EI
= 3θ

 (c) 
Ml

EI
= 4θ  (d) 

Ml

EI
= 6θ

 Solution: (a)

A

M

θ θ

M

B
C

Cl

+

diagram

M

EI

M

EI

M

EI

  According to moment area theorem, the angle 

in radians between two tangents drawn from the 
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 δ:  Compression of the spring, which is equal to the 

downward deflection of beam at C.

R

K

PL

EI

RL

EI

R
K

L

EI

PL

EI

R
EI KL

EI K

= −

+








 =

+



3 3

3 3

3

48 48

1

48 48

48

48





 =

=
+

PL

EI

R
PL K

EI KL

3

3

3

48

48

 Deflection of the beam, 

δ =
R

K

δ =
+

PL

EI KL

3

348

 Hence, the correct option is (a).

TWO-MARKS QUESTIONS

 1. A 3 m long simply supported beam of uniform 

cross section is subjected to a uniformly distrib-

uted load of w = 20 kN/m in the central 1 m as 

shown in the figure. [2016]

EI = 30 x 106 N.m2

1 m 1 m 1 m

w = 20 kN/m

  If the flexural rigidity (EI) of the beam is 30 × 106 

N-m2, the maximum slope (expressed in radians) 

of the deformed beam is

 (a) 0.681 × 10−7 (b) 0.943 × 10−7

 (c) 4.310 × 10−7 (d) 5.910 × 10−7

 Solution: 

P Q

1m 1m 1m

20 kN/m

EI

R R

M x EI
d y

dx
x x

y

p Q

= ×

= =

= − = ≤ ≤

= + −

30 10

10

10 0 1

10 1 2

6 2

2

2

N-m

kN

( ) ( )

( ) 00 0 5 2 0 0 5y y y( . ) ( . )− ≤ ≤/

0 1

10

2

0 0 5

10
10

3

0 5

2

1

3

1

≤ ≤

− = +

≤ ≤

− = − +

=

x

EI
dy

dx

x
C

y

EI
dy

dx
y y C

y
dy

dx

.

. ; ==

⇒ = × − × +

⇒ = −

=

⇒ + = −

= =

0

0 10 0 5
10

3
0 5

4 583

5

3

1

1

1 0

1

. ( . )

.

C

C

dy

dx

dy

dx

C

x y

44 583

9 583

9 583

30 10
3 19 10

1

1

6

7

.

.

.
.

max

⇒ = −

= =
−

×

= − ×
−

C

dy

dx

C

EI

  Hence, none of the options given in question is correct.

 2. Two beams PQ (fixed at P and with a roller support 

at Q, as shown in Figure I, which allows vertical 

movement) and XZ (with a hinge at Y) are shown in 

the Figures I and II, respectively. The spans of PQ 

and XZ are L and 2L, respectively. Both the beams 

are under the action of uniformly distributed load 

(W) and have the same flexural sti"ness, EI (where, 

E and I, respectively denote modulus of elasticity 

and moment of inertia about axis of bending). Let 

the maximum deflection and maximum rotation be 

δ
max1

 and θ
max1

, respectively, in the case of beam PQ 

and the corresponding quantities for the beam XZ 

be δ
max2

 and θ
max2

, respectively. [2016]

P
L

W

Q

Figure 1

So,

at
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 Solution: 3.2

A

L

O

  For a cantilever, with point load at free end, deflec-

tion

S
PL

EI
c

3

3

 Deflection of spring S
F

k
s

 But at point B, S
c
 = S

s

PL

EI

F

K

F

F

3

3

3
3

3

50 200

3 200 10
5 10

12

2

3 2

=

×

× × ×
×

=

=

( )

. N

 Hence, the answer is 3.2.

 5. A simply supported beam AB of span L = 24 m is 

subjected to two wheel loads acting at a distance, 

d = 5 m apart as shown in the figure below. Each 

wheel transmits a load, P = 3 kN and may occupy 

any position along the beam. If the beam is an 

I-section having section modulus. S = 16.2 cm3, 

the maximum bending stress (in GPa) due to the 

wheel loads is ___________. [2015]

B

P P

L

d

A

 Solution: 1.783

  For maximum bending moment, the maximum 

load point and resultant should be at equal distance 

from the centre of beam

X Z

L LY

Hinge

W W

Figure 2

 Which one of the following relationships is true?

 (a) δ
max1

 ≠ δ
max2

 and θ
max1

 ≠ θ
max2

 
(b) δ

max1
 = δ

max2
 and θ

max1
 ≠ θ

max2

 
(c) δ

max1
 ≠ δ

max2
 and θ

max1
 = θ

max2

 
(d) δ

max1
 = δ

max2
 and θ

max1
 = θ

max2

 
Solution: (d)

 By principal of superposition,

 g g
max max max max

;
1 2 1 2
= =θ θ

 Hence, the correct option is (d).

 3. A simply supported reinforced concrete beam of 

length 10 m sags while undergoing shrinkage. 

Assuming a uniform curvature of 0.004 m-1 along 

the span, the maximum deflection (in m) of the 

beam at mid-span is _________ [2015]

 Solution: 0.05 m

 Curvature = 1/R = 0.004 m−1

 Radius of curvature R = 1/ 0.004 = 250 m

 From geometry of circles we get 

  (L/2)(L/2) = (AB)(BC)

  L2/4= (2R − y)y

  L2/4= 2Ry − y2

 neglecting y2 in above equation we get 

 Y = L2/8R = (10)2/ (8 × 250)=0.05 m

 Hence, the answer is 0.05 m.

 4. A steel strip of length, L = 200 mm is fixed at end 

A and rests at B on a vertical spring of sti"ness, k = 

2 N/mm. The steel strip is 5 mm wide and 10 mm 

thick. A vertical load, P = 50 N is applied at B, as 

shown in the figure. Considering E = 200 GPa, the 

force (in N) developed in the spring is _________.

 [2015]

B

P

K

L

A
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A B
d

4

P P

L/2

3d

4

 L = 24 m, P = 3 kN, S = 16.2 cm3, d = 5 m

 ⇒            R P
L d

p L
d

R

B

B

× = × +








 + −











× = × +








 + −

24
2

3

4 4

24 3 12
15

4
3 12

5

44











  R
B
 = 3.3125 kN

  R
A
 = (6 – 3.3.125)

  = 2.6875 kN

  Maximum BM occur at point X under the maxi-

mum load

  M
x
 = R

A
 × x

  = 2.6875 × (12 – 1.25)

  = 28.89 kNm

 From Bending Equation,

E

R

M

I

f

y

 Bending stress f
M

I
y= ×

                            
I

y
S  = section Modulus

F
M

S
max

max

.

.

=

=
×

×
−

28 89 10

16 2 10

3

6

  = 1.783 × 109N/m2

  = 1.783 GPa.

 Hence, the answer is 1.783.

 6. The beam of an overall depth 250 mm (shown in the 

figure) is used in a building subjected to two di"er-

ent thermal environments. The temperatures at the 

top and bottom surfaces of the beam are 36°C and 

72°C, respectively. Considering coe&cient of ther-

mal expansion (α) as 1.50 × 10–5/°C, the vertical 

deflection of the beam (in mm) at its mid span due 

to temperature gradient is ___________.  [2014]

36° C

72° C

1.5 m1.5 m

250 mm

 Solution: 2.43

 Overall depth of beam, h = 250 mm

 Temperature at top of the beam, T
1
 = 36°C

 Temperature at bottom of the beam, T
2
 = 72°C

  Coe!cient of thermal expansion, α = 1.5  

× 10−5/°C

 Vertical deflection at mid span of the beam = ?

A

D

δ

C

O

B

h

L

2

L

2

R
h

T
=
α

 From the property of circle, 

( )2
2 2

R
L L

− =δ δ

 Neglecting the term of  δ 2,

           2
4

2

R
L

δ =

               
δ

α
= =

L

R

L T

h

2 2

8 8

δ =
× × −

× ×

= × =

−

−

−

( ) . ( )

. .

3 1 5 10 72 36

8 250 10

2 43 10 2 43

2 5

3

3 m mm

A B

h

36°C

C 72°C

1.5 m 1.5 m

 Hence, the answer is 2.43.

 7. A simply supported beam is subjected to a uni-

formly distributed load of intensity w per unit 

length on half of the span form one end. The length 

of the span and the flexural sti"ness are denoted as 
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l and EI, respectively. The deflection at mid-span 

of the beam is [2012]

 (a) 
5

6144

4Wl

EI
 (b) 

5

768

4Wl

EI

 (c) 
5

384

4Wl

EI
 (d) 

5

192

4Wl

EI

 Solution: (b)

w/m

A B
C

l

2
l

2

 Taking moment of all forces about A,

ΣM R l w
l l

R
wl

A B B
= ⇒ − = =0

2 4
0

8
;

ΣV R R
wl

R
wl wl

wl
A B A

= ⇒ + = = − =0
2 2 8

3

8
;

 BM at any distance x from B,

M
wl

x
w

x
l

x
= − −











8 2 2

2

EI
d y

dx
M

wl
x

w
x

l
x

2

2

2

8 2 2
= − = − + −









⋮

 Integrating wrt x,

EI
dy

dx

wl
x c

w
x

l
= − + + −











16 6 2

2

1

3

⋮

 Integrating wrt x,

EI y
wl

x c x c
w

x
l

= + + + −










48 24 2

3

1 2

4

⋮

 At       x y c= = ⇒ =0 0 0
2

,

 At x l y
wl

c l
wl

= = ⇒ = + +, 0 0
48 384

4

1

4

;

                 c
wl wl

wl
1

3 3
3

48 384

7

384
= − =

     EI y
wl

x wl x
w

x
l

= − + + −










48

7

384 24 2

3 4

4

/

 At             x
l

2
, EI y

wl
wl

l
c
= − +

4
3

384

7

384 2
; 

        y
wl

EI
c
= − +

4 1

768
2 7[ ]

5

768

4wl

EI

 or

 By Conjugate beam method:

w/m

A B
C

Actual beamR
A 
=

 

3 wl
8

R
B 

=
 
wl
8

A′
B′

C′

 Conjugate beam 

 

wl2

16EI

Σ ′ = ⇒ ′ − +










− × =

M R l
wl

EI

l l l

wl

EI

l l

A B
0

1

2 16 2 2

1

3 2

2

3 16 2

3

4 2
0

2

2

 ′ = + = +








 =R

wl

EI

wl

EI

wl

EI

wl

EI
B

3 3 3 3

96 128

1

96

1

128

7

384

  BM at C′ in conjugate beam = Deflection at C in 

real beam

     = −
7

384 2

1

2 16 2

1

3 2

3 2wl

EI

l wl

EI

l l

     = −










wl

EI

4 7

768

1

384

δ
c

wl

EI
=

5

768

4

 Hence, the correct option is (b).

  Statement for Linked Questions 8 and 9:

  A rigid beam is hinged at one end and supported 

on linear elastic springs (both having a sti"ness of 

‘k’) at points ‘1’ and ‘2’ and an inclined load acts 

at ‘2’, as shown in the figure. [2011]

l l

Hinge

45°

45°

√2 P

21

Fixed

Fixed
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 8. Which of the following options represents the 

deflection δ
1
 and δ

2
 at points ‘1’ and ‘2’? 

 (a) δ δ
1 2

2

5

2 4

5

2
=









 =











P

k

P

k
and

 (b) δ δ
1 2

2

5

4

5
=









 =











P

k

P

k
and

 (c) δ δ
1 2

2

5 2

4

5 2
=









 =











P

k

P

k
and

 (d) δ δ
1 2

2

5

2 4

5

2
=













=










P

k

P

k
and

 Solution: (b)

R
1
 = K δ

1

Forces acting on rigid body

R
2
 = K δ

2

P

PP o I 2

Deflection of the rigid beam

δ
2δ

1

O 2

 From the deflection of the rigid beam,

δ δ
δ δ

1 2

2 1
2

2
l l
= ⇒ = .

 Taking moments of all forces about the hinge O,

          ΣM P l k l k l= ⇒ − − =0 2 2 0
2 1
δ δ

2 4 0
1 2

Pl k l k l− − =δ δ

2 5 0
1

P k l− =δ

                               δ1

2

5
=











P

k

                              δ2

4

5
=











P

k

 Hence, the correct option is (b).

 9. If the load P equals 100 kN, which of the following 

options represents forces R
1
 and R

2
 in the springs 

at points ‘1’and ‘2’? 

 (a) R
1
 = 20 kN and R

2
 = 40 kN

 (b) R
1
 = 50 kN and R

2
 = 50 kN 

 (c) R
1
 = 30 kN and R

2
 = 60 kN

 (d) R
1
 = 40 kN and R

2
 = 80 kN 

 Solution: (d)

         P = 100 kN

δ δ
1 2

2

5

100 40 4

5

100 80
= × = = × =

k k k k
,

             

R k k
k

R k k
k

1 1

2 2

40
40

80
80

= = =

= = =

δ

δ

kN

kN

,

.

 Hence, the correct option is (d).

  Statement for Linked Questions 10 and 11:

  In the cantilever beam PQR shown in figure, the 

segment PQ has flexural rigidity EI and the seg-

ment QR has infinite flexural rigidity. [2009]

P
El Q

W

R

L L

Rigid

 10. The deflection and slope of the beam at ‘Q’ are 

respectively

 (a) 
5

6

3

2

3 3WL

EI

WL

EI
and  (b) 

WL

EI

WL

EI

3 2

3 2
and

 (c) 
WL

EI

WL

EI

3 2

2
and  (d) 

WL

EI

WL

EI

3 2

3

3

2
and  

 Solution: (a)

R

W
QEI

X XP

L L

Rigid

 Deflection at Q, (δ
vQ

):

  Let us apply a unit load at point where the vertical 

deflection is to be found

I

X

 Vertical deflection at 

  Q, = δVQ

Mm

EI
dx= ∫
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  = 
( ) ( ) ( )−

∞
+

− + −
∫∫

Wx dx W L x x

EI
dx

L
0

0

  = 
W

EI
Lx x dx

W

EI

L L
L

( )+ = +








∫

2

0

3 3

2 3

      δvQ

WL

EI
=

5

6

3

 Slope at Q (θ
Q
):

 Apply unit clockwise moment at Q

M = I

X

 Slope at Q,

     θQ

Mm

EI
dx= ∫

         = +
− + −

= +∫ ∫0
1

0 0

W L x

EI
dx

W

EI
L x dx

L L
( )( )

( )

          = +










W

EI
L

L2
2

2

     θQ

WL

EI
=

3

2

2

 Hence, the correct option is (a).

 11. The deflection of the beam at ‘R’ is 

 (a) 
8 3WL

EI
 (b) 

5 3

6

WL

EI

 (c) 
7 3

3

WL

EI
 (d) 

8 3

6

WL

EI

 Solution: (c)

P

θ

Q R

δ
R

 Deflection at R,

 δ δ θ
R Q Q

L= +

= 
5

6

3

2

3 2WL

EI

WL

EI
L = 

WL

EI

3 5

6

3

2
+









 = 

14

6

3WL

EI

  δR

WL

EI
=

7

3

3

 Hence, the correct option is (c).

 12. The stepped cantilever is subjected to moments,  

M as shown in the figure. The vertical deflection at 

the free end (neglecting the self weight) is [2008]

M

M

El

2 El

L

2

L

2

 (a) 
ML

EI

2

8
 (b) 

ML

EI

2

4

 (c) 
ML

EI

2

2
 (d) 0

 Solution: (c)

A B

M

M

2EI
EI

L

2

L

2

M
2M

BMD

diagram

M

EI

M

EI

M

EI

 Using moment area method:

  Deflection at B, B = Moment of the area of 
M

EI
diagram between A and B about B

M

EI
L

L

L

ML

EI

2

2

 (or)

 Using unit load method:

δ
B

Mm

EI
dx= ∫

  =  Area of 
M

EI
 diagram × ordinate of m diagram at 

c.g. of
M

EI
diagram

M

EI
L

L

2

ML

EI

2

2
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L

A B

M diagram

I

2
L

 Hence, the correct option is (c).

  Statement for Linked Questions 13 and 14:

  Beam GHI is supported by three pontoons as 

shown in the figure. The horizontal cross-sectional 

area of each pontoon is 8 m2, the flexural rigidity 

of the beam is 10000 kN-m2 and the unit weight of 

water is 10 kN/m3. [2008]

G H I

5 m 5 m

P 48 kN

 13. When the middle pontoon is removed, the deflec-

tion at H will be 

 (a) 0.2 m (b) 0.4 m

 (c) 0.6 m (d) 0.8 m

 Solution: (b)

  The reactions at the extreme ends of the supports 

are zero as there are hinges to the left of G and 

to the right of I. When the middle pantoon is re-

moved, the beam GHI acts as a simply supported 

beam. 

G I
H

δ

48 kN

     

G

R
1
 = 24 kN R

1
 = 24 kN

H
δ

H y

y

48 kN

  The deflection at H will be due to the load at H as 

well as due to the displacement of pantoons at G 

and I in water. 

  Since, the loading is symmetrical, both pantoons 

will be immersed to the same depth.

 Let y be the immersed depth of pantoons

R R R
G I 1

 Using the principle of buoyancy,

 y × cross-sectional area of pontoon × w  = R
1

y R× × =8 10
1

 
y

R
1

80

24

80
0 3. m

 δ = deflection due to 48 kN load

= =
×

×

=
wl

EI

3 3

48

48 10

48 10000
0 1. m

 Total deflection at H,

δ δ
H

y= +

= 0.3 + 0.1 = 0.4 m

 Hence, the correct option is (b).

 14. When the middle pontoon is brought back to its 

position as shown in the figure, the reaction at H 

will be [2008]

 (a) 8.6 kN (b) 15.7 kN

 (c) 19.2 kN (d) 24.4 kN

 Solution: (c)

 

G

R
1

R
1

R

I
δ

H

y

y + δ

y

48 kN

  As the beam is loaded symmetrically, the reaction 

at G and I will be same. 

ΣV R R= ⇒ + =0 2 48
1

 Elastic deflection at H,

δ =
−( )P R l

EI

3

48
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  Bending moment does not depend on the rigidity 

or flexibility of the beam. 

BM A P L PLat 2 2

 Hence, the correct option is (a).

 16. For the linear elastic beam shown in the figure, the 

flexural rigidity, EI, is 781250 kN-m2. When w = 

10 kN/m, the vertical reaction R
A
 at A is 50 kN. 

The value of R
A
 for w = 100 kN/m is [2004]

A

B

5 m

6 mm gap

Rigid platform

(kN/m)

   

 (a) 500 kN (b) 425 kN

 (c) 250 kN (d) 75 kN

 Solution: (b)

A B

5 m 6 mm

w kN/m

  Deflection at the free end B due to w = 10 kN/m 

load

δ
B

wl

EI1

4 4 3

8

10 5 10

8 781250
1= =

× ×

×
= mm

  The gap available between the beam and rigid plat-

form is 6 mm. Therefore, no reaction will be devel-

oped at the end B. 

  Deflection at the free end B due to w = 100 kN/m 

load, B2
= 10 mm

  But the end B can undergo a deflection of 6 mm 

and for the remaining 4 mm, the reaction at B 

 induced. 

R l

EI

R
RB B

B

3 3

3

3
4

5

3 781250
4 10 75=

×

= × =
−;

( )
; kN

     R
A
= × − =5 100 75 425 kN

 Hence, the correct option is (b).

 17. A “H” shaped frame of uniform flexural rigidity 

EI is loaded as shown in the figure. The relative 

outward displacement between points K and O is. 

 [2003]

 Also, using principle of buoyancy, 

 (y + δ) × cross sectional area of pontoon × w = R

( )y R+ × × =δ 8 10

        
y

R R R
+ = + =δ δ

80 80 80

1;

δ = − = − +
1

80

1

80
24 0 5

1
( ) ( . )R R R R

                 = −
1

80
1 5 24( . )R

( )
( )

48 10

48 10000

1

160
3 48

3
−

×

= −
R

R

48 9 144− = −R R

10 192 19 2R R; . kN

 Hence, the correct option is (c).

 15. Consider the beam AB shown in the figure. Part 

AC of the beam is rigid while Part CB has the flex-

ural rigidity EI. Identify the correct combination 

of deflection at end B and bending moment at end 

A, respectively [2006]

A C B

P

LL

 (a) 
PL

EL
PL

3

3
2,  (b) 

PL

EL
PL

3

3
,

 (c) 
8

3
2

3PL

EL
PL,  (d) 

8

3

3PL

EL
PL,

 Solution: (a)

A B

P

C
LL

  Part AC of the beam is rigid, so end C will act as a 

fixed end. 

D B
PL

EI
eflection at

3

3
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R R
M

N

O

h

h

L

K

J

I

 (a) 
RLh

EI

2

 (b) 
RL h

EI

2

 (c) 
RLh

EI

2

3
 (d) 

RL h

EI

2

3

 Solution: (a)

 

I

θ

θ θ

θ

θ
θ

I′

K′ O′OK

Frome after displacement

M′ M

NJ

R

Frame

R
M

N

O

h

h

L

K

J

I

 BM at the ends of the member JN = R.h(sagging)

 Slope at J or N, 

θ = =
Rh

EI

L RhL

EI2 2

 Displacement at K, 

KK h′ = θ .

RhL

EI
h

RLh

EI2 2

2

 Outward displacement between joints K and O 

2
2

2 2RLh

EI

RLh

EI

 Hence, the correct option is (a).

 18. A two span beam with an internal hinge is shown 

in the figure. [2000]

a b

c d

Hinge

 Conjugate beam corresponding to this beam is 

 (a) a b c d

 (b) a b c d

 (c) 
a b c d

 (d) a b c d

 Solution: (a)

Real beam Conjugate beam

Fixed support Free end

Free end Fixed support

External Hinged support External Hinged support

Internal hinge Hinged support

Hinged support Internal hinge

A

Hinge

Real beam

B

C D

A′

Conjugate Beam

B′ C′ D′

 Hence, the correct option is (a).
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FIVE-MARKS QUESTIONS

 1. A cantilever beam AB carries a concentrated force 

P and a moment M PL/3  at its tip as shown 

below. Show, using Castigliano’s theorem that, if 

the angle of inclination α of the line of action of 

the force P is such that α =1 2/ , then the displace-

ment of the point B, due to bending, will be in the 

direction of force P. [2000]

     L

M
A

p

α
x

B
El = Constant

 Solution: 

L
M

p

α
x

R

A B

  Deflection perpendicular to P 0  because load is 

given along P

 Hence, by Castiglino’s first theorem

 
M

EI

M

R
dx

L ∂

∂









 =∫

0

0  (1)

 Then Moment in X-direction

 M P x R x M
x
= − − =sin cosα α 0

 So             
∂

∂
= −

M

R
xx cosα

  Hence from eq. (1)[−Px2 sin α cosα + R cos2 αx + 

Mx cos α]dx = 0

 Put R = 0 and integrating, we get

− + =
P

L M
L

2
2

2
03

2

sin cosα α

 In above equation, putting M
PL

3
, we get

 
PL P

L
3

3

6 6
2cos sinα α= or cos sin cosα α α= 2

∴ =sinα
1

2

 Hence, the answer is ∴ =
1

2
.

 2. The given figure shows a cantilever member bent 

in the form of a quadrant of a circle with a radius 

of 1.0 m up to the centre of the cross-section. The 

member is subjected to a load of 2 kN as shown. 

The member is having circular cross-section with 

a diameter of 50 mm. Modulus of elasticity (E) of 

the material is 2.0 × 105 MPa. Calculate the hori-

zontal displacement of the tip. [1999]

2 kN

 Solution:

1 m

H

R
dθ

R

θ
d

θ

W = 2 kN

 Apply a Pseudo load, H as shown in the figure.

∴ = + −

∴ =

=
+ −

∫

M WR H R R

U
M dS

EI

U
WR HR R

EI

sin ( cos )

[ sin ( cos )]

θ θ

θ θ

2

2

2

2 1

2
00

2

0

2
2 1 1

2

π

π

θ

θ θ θ
θ

/

/
[ sin ( cos )][ ( cos )]

∫

∫∴
∂

∂
=

+ − −

⇒
∂

d

U

H

WR HR R R

EI
d

UU

H

WR HR R R

EI
d

∂
=

+ − −
∫

sin ( cos )[ ( cos )]
/ θ θ θ

θ
π

1 1

0

2
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 Now, putting H = 0

∴
∂

∂
=

−

= −










∫
U

H
WR

EI
d

WR

EI
H

3

0

2

3

0

2

1

2

2

sin( cos )

sin
sin

/

/

θ
θ

θ
θ

π

π

∆ ∫∫

= − +










= −








 − − +

d

WR

EI

WR

EI

H

H

θ

θ
θ

π

∆

∆

3

0

2

3

2

4

0
1

4
1

1

4

cos
cos

/





















= − +










=

∆

∆

H

H

WR

EI

WR

EI

3

3

1

4

3

4

2

 Given load in vertical direction,

 Now using the formula given below 

I
d

H

= =
×

∴ =
× × ×

× × × ×

=

π π

π

2 4

3 3

5 4

64

50

64

2 10 1000 64

2 2 10 50

16 2975

∆
( )

( )

. mmm

 Hence, the answer is 16.2975 mm.

 3. Compute the slope at the support B of the propped 

cantilever beam shown in the figure. The value of 

EI is constant [1998]

A
B

P

2l/3 l/3

 Solution:

A
B

P

2l/3 l/3

  If ‘R’ be the prop reaction at B then using method 

of superposition

 

P

2l/3 l/3

A B

R

Rl

El

M

El

2Pl

3El

R

=

+

+
A

1

A
2

diagram

X
1

X
2

P

+

−

 As end B is confined by prop reaction ‘R’.

 Therefore deflection at B = 0

 ⇒ =δ
B

0

 Now δB
A x A x= +

1 1 2 2

 

⇒ = − +










⇒ = −

0
1

2

2

3

1

2

2

3

2

3

2

3

2

3 3

0
3

2

9

7

9

3 2

Rl

EI
l l

Pl

EI

l l l

Rl

EI

Pl

EI
ll

Rl Pl

R
P











⇒ =

⇒ =

3 3

3

14

81

14

27

 Now,

 Slope of support B = Area of 
M

EI
 diagram.

= −

=








 −

= −

1

2

1

2

2

3

2

3

14

27 2

2

9

14

54

2

2 2

2

Rl

EI
l

PI

EI

l

P l

EI

Pl

EI

Pl

EI

Pll

EI

Pl

EI

2 2

9 27
=

 



Torsion

ONE-MARK QUESTIONS

 1. A long shaft of diameter d is subjected to twisting 

moment T at its ends. The maximum normal stress 

acting at its cross-section is equal to [2006]

 (a) zero (b) 
16

3

T

dπ

 (c) 
32

3

T

dπ
 (d) 

64
3

T

dπ

 Solution: (b)

 Let d, Diameter of the shaft

 T, Twisting moment

 σ, Maximum normal stress

 τ, Maximum shear stress

 Torsion formulais

   
T

J

G

L R
= =

θ τ

τ
max

=
T

J
R

        = =
T

d

d T

dπ π
4 3

32

2

16

 Maximum normal stress is zero.

  Due to twisting, the shaft is subjected to only shear 

stress.

 Hence, the correct option is (b).

 2. A circular shaft shown in the figure is subjected 

to torsion T at two points A and B. The torsional 

rigidity of portions CA and BD is GJ
1
 and that of 

portion AB is 

L L LT T

C A R D

  GJ
2
. The rotations of shaft at point A and B are θ

1
 

and θ
2
. The rotation θ

1
 is [2005]

 (a) 
TL

GJ GJ
1 2

 (b) 
TL

GJ
1

 (c) 
TL

GJ
2

 (d) 
TL

GJ GJ
1 2

 Solution: (b)

 L L L
TT

C A B D

  By symmetry, the shaft shows that there is no tor-

sion on the portion AB. Hence, Torque T is acting 

on each of the end portions AC and BD.

T

J

G

l

TL

GJ
= ⇒ =

θ
θ

 For portion AC or BD,θ1

1

=
TL

GJ

 Hence, the correct option is (b).

 3. A circular solid shaft of span L = 5 m is fixed at 

one end and free at the other end. 

  A twisting moment T = 100 kN-m is applied at the 

free end. The torsional rigidity GJ is  50000  kN-m2/

rad. Following statements are made for this shaft.

Chapter 7
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   I. The maximum rotation is 0.01 rad

 II. The torsional strain energy is 1 kN-m

  With reference to the above statements, which of 

the following applies? [2004]

 (a) Both statements are true

 (b) Statement I is true but II is false

 (c) Statement II is true but I is false

 (d) Both the statements are false

 Solution: (b)

 Length of shaft, L = 5 m

 Twisting moment, T = 100 kNm

 Torsion rigidity, GJ = 50000 kN-m2/rad

 Torsion formula,

T

J

G

l R
= =

θ τ

 Maximum rotation,

θ = =
×

=
Tl

GJ

100 5

50000
0 01. rad

 Torsional strain energy, 

                 U T=
1

2
θ

= × × =
1

2
100 0 01 0 5. . kNm

 Statement I is true but II is false.

 Hence, the correct option is (b).

TWO-MARKS QUESTIONS

 1. Polar moment of inertia (I
P
) in cm4,of a rectangular 

section having width, b = 2 cm and depth, d = 6 cm 

is __________ [2014]

 Solution: 40

 Width of the beam, b = 2 cm

 Depth of the beam, d = 6 cm

 Polar moment of Inertia, 

I I I

bd db

p x y
= +

= +

=
×

+
×

= + =

3 3

3 3
4

12 12

2 6

12

6 2

12
36 4 40 cm

 Hence, the answer is 40 cm4.

 2. A sold circular shaft of diameter d and length L is 

fixed at one end and free at the other end. A torque 

T is applied at the free end. The shear modulus of 

the material is G. The angle of twist at the free 

ends is  [2010]

 (a) 
16

4

TL

d Gπ
 (b) 

32
4

TL

d Gπ

 (c) 
64

4

TL

d Gπ
 (d) 

128
4

TL

d Gπ

 Solution: (b)

 Diameter of solid circular shaft, d

 Length of shaft, L

 Applied torque, T

 Shear modulus, G

 Polar moment of inertia, J
d

=
π

4

32

 Torsion formula, 
T

J

G

l R
= =

θ τ

 Angle of twist, θ =
Tl

GJ

θ
π π

= =
TL

G
d

TL

d G4 4

32

32

 Hence, the correct option is (b).

 3. A hollow circular shaft has an outer diameter of 

100 mm and a wall thickness of 25 mm. The allow-

able shear stress in the shaft is 125 MPa. The maxi-

mum torque the shaft can transmit is [2009]

 (a) 46 kNm (b) 24.5 kNm

 (c) 23 kNm (d) 11.5 kNm

 Solution: (c)

 Outer diameter of the shaft, D = 100 mm

 Thickness of the shaft, t = 25 mm

 Internal diameter of the shaft, d = 50 mm

 Allowable shear stress in the shaft, τ = 125 MPa

 Torque transmitted by the shaft, T = ?

 Torsion formula, 
T

J

G

l r
= =

θ τ

 Outer radius of the shaft, R = 50 mm

 Polar moment of Inertia, J D d= −
π

32

4 4( )

J = − = ×
π

32
100 50 920 3 104 4 4( ) . mm4
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 T
R

J= = × × = ×
τ 125

50
920 3 10 23 0 104 6. . Nmm

                                                = 23.0 kNm

 Hence, the correct option is (c).

 4. The maximum shear stress in a solid shaft of circu-

lar cross-HE =section having diameter d subjected 

to a torque T is τ. If the torque is increased by four 

times and the diameter of the shaft is increased by 

two times, the maximum shear stress in the shaft 

will be [2008]

 (a) 2τ (b) τ
 (c) τ/2 (d) τ/4

 Solution: (c)

 T, Torque

 τ, Maximum shear stress

 d, Diameter of the solid circular shaft

T T
1

4 ; d d
1

2 ; R R
1

2 ; 1 : ?

 Torsion formula is,

T

J

G

L R
= =

θ τ
; τ =

T

J
R

 Polar moment of inertia,

               J
d R

= =
π π

4 4

32 2

τ

τ
1 1

1

1 1

1

4

1=


























 =











T

T

J

J

R

R

T

T

D

D

R

R

                  = × × =4
1

2
2

1

24( )

              τ
τ

1
2

=

 Hence, the correct option is (c).

 5. The maximum and minimum shear stresses in a 

hollow circular shaft of outer diameter 20 mm and 

thickness 2 mm, subjected to a torque of 92.7 N-m 

will be [2007]

 (a) 59 MPa and 47.2 MPa

 (b) 100 MPa and 80 MPa

 (c) 118 MPa and 160 MPa

 (d) 200 MPa and 160 MPa

 Solution: (b)

 Outer diameter of shaft, D = 20 mm

 Thickness of the shaft, t = 2 mm

 Inner diameter of shaft, d = 20 – 2 × 2 = 16 mm

 Torque, T = 92.7 Nm

 Torsion equation is 
T

J

G

L r
= =

θ τ

 Polar moment of inertia, J D d= −
π

32

4 4( )

= − =
π

32
20 16 92744 4 4( ) mm

  Maximum shear stress occurs at the outer surface 

and minimum shear stress occurs at inner surface 

of the shaft.

τ
max

.
=

×
× =

92 7 10

9274
10 100

3
2N/mm

τ
min

.
=

×
× =

92 7 10

9274
8 80

3
2N/mm

 Hence, the correct option is (b).



ONE-MARK QUESTIONS

 1. A long structural column (length= L) with both 

ends hinged is acted upon by an axial compressive 

load, P. The di!erential equation governing the 

bending of column is given by

EI
d y

dx
Py

2

2
= −

  where y is the structural lateral deflection and EI 

is the flexural rigidity. The first critical load on 

column responsible for its buckling is given by  

 [2003]

 (a) π 2 2EI L/  (b) 2 2 2
π EI L/

 (c) 2 2 2
π EI L/  (d) 4 2 2

π EI L/

 Solution: (a) 

 Length of column = L

 End condition: Both ends hinged

 Compressive load = P

 Flexural rigidity = EI

 Critical load on column, P
EI

L
c
=
π

2

2

 Hence, the correct option is (a).

 2. Four column of the same material and having iden-

tical geometric properties are supported in di!er-

ent ways as shown in the figure. [2000]

I II III IV

  It is required to order these four beams in the in-

creasing order of their respective first buckling 

loads. The correct order is given by

 (a) I, II, III, IV  (b) III IV, I, II

 (c) II, I, IV, III  (d) I, II, IV, III

 Solution: (d)

End condition Buckling load

I One end fixed and the 

other free
π

2

24

EI

L
⋅

II Both ends hinged
π

2

2

EI

L
⋅

III Both ends fixed 4 2

2

π EI

L
⋅

IV One end fixed and the 

other hinged
2 2

2

π EI

L
⋅

 Increasing order of buckling loads: I, II, IV and III

 Hence, the correct option is (d).

 3. The e!ective length of a circular electric pole of 

length L and constant diametres erected on ground 

is [1996]

 (a) 0.80 L (b) 1.20 L

 (c) 1.50 L (d) 2.00 L

 Solution: (d)

 

L Effective length, l
eff

 = 2L

 Hence, the correct option is (d).

Columns and Struts

Chapter 8
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 4. When a column is fixed at both ends, correspond-

ing Euler’s critical load is [1994]

 (a) 
π

2

2

EI

L
⋅ (b) 

2 2

2

π EI

L

 (c) 
3 2

2

π EI

L
 (d) 

4 2

2

π EI

L

 where L is the length of the column.

 Solution: (d)

  Eulers buckling load for a column hinged at both 

ends, P
EI

L
E
=
π

2

2

 If both ends of the column are fixed, L
L

eff
2

  Eulers buckling load for a column fixed at both 

ends, P
EI

L
E
=

4 2

2

π

 Hence, the correct option is (d).

 5. The axial load carrying capacity of a long col-

umn of given material, cross-sectional area A and 

length L is governed by [1992] 

 (a) strength of its material only

 (b) its flexural rigidity only

 (c) its slenderness ratio only

 (d) both flexural rigidity and slenderness ratio

 Solution: (d)

 Eulers buckling load, 

P
EI

L

P
EAk

L

EA

E

E

=

= =

π

π π

λ

2

2

2 2

2

2

2

 λ, Slenderness ratio 
L

k
 k, Radius of gyration

 For a given material, E is constant.

  For a given cross sectional area, A is constant and 

for a given length, L is constant. 

  P
E
 depends on least radius of gyration, which in 

turn depends on slenderness ratio / flexural  rigidity.

 Hence, the correct option is (d).

TWO-MARKS QUESTIONS

 1. Two steel columns P(length L and yield strength f
y
 

= 250 MPa) and Q(length 2L and yield strength f
y 

= 500 MPa) have the same cross-sections and end-

conditions. The ratio of buckling load of column P 

to that of column Q is [2013]

 (a) 0.5  (b) 1.0

 (c) 2.0  (d) 4.0

 Solution: (d)

 Column P:

 Length = L

 Yield strength, f
y
 = 250 MPa

 Column Q:

 Length = 2 L

 Yield strength, f
y
 = 500 MPa 

  Columns P and Q have same cross sectional area 

and end conditions.

 Buckling load, P
EI

L
cr
=
π

2

2

( )

( )

( )P

P

EI

L

EI

L

L

L

cr

cr

P

Q

columm P

columm Q

=





















=

π

π

2

2

2

2

22
22

4=

 Hence, the correct option is (d).

 2. The ratio of the theoretical critical bucking load 

for a column with fixed ends to that of another col-

umn with the same dimensions and material, but 

with pinned ends, is equal to [2012]

 (a) 0.5 (b) 1.0

 (c) 2.0 (d) 4.0

 Solution: (d)

 Column with fixed ends,

P
EI

l
cr
=

4 2

2

π

 Column with pinned ends, 

P
EI

l
cr
=
π

2

2

P

P

cr

cr

fixed

hinged
4

 Hence, the correct option is (d).

 3. The e!ective length of a column of length L fixed 

against rotation and transition at one end and free 

at the other end is [2010]

 (a) 0.5 L (b) 0.7 L

 (c) 1.414 L (d) 2 L
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 Solution: (d)

  End condition: Fixed at one end and free at the 

other end

 E!ective length, l
e
 = 2 L

 Hence, the correct option is (d).

 4. Consider the following s statements for a compres-

sion member [2009]

      I.  The elastic critical stress in compression in-

creases with decrease in slenderest ratio

    II.  The e!ective length depends on the boundary 

conditions at its ends 

  III.  The elastic critical stress in compression is in-

dependent of the slenderness ratio

   IV.  The ratio of the e!ective length to its radius of 

gyration is called as slenderness ratio

 The true statements are

 (a) II and III (b) III and IV

 (c) II, III and IV (d) I, II and IV

 Solution: (d)

  E!ective length of a compression member depends 

on the boundary condition at its ends.

 E!ective length, l
e
 = L Both ends hinges

  = 2 L One end fixed and other free

  = 
L

2
 Both ends fixed

  =
L

2
One end fixed and other hinged.

  Slenderness ratio is the ratio of the e!ective length 

to its radius of gyration.

λ =
l

r

e

  The elastic critical stress in compression increases 

with decrease in slenderness ratio.

0 50

Slenderness ratio (λ)

E
la

s
ti
c
 c

ri
ti
c
a
l 
s
tr

e
s
s
 (
N

/m
m

2
)

50

100

100

150

200

250

300

150 200

 Hence, the correct option is (d).

 5. Cross-section of a column consisting of two steel 

strips, each of thickness t and width b is shown in 

the figure below. The critical loads of the column 

with perfect bond and without bond between the 

strips are P and P
0
,respectively. The ratio P/P

0 
is

 [2008]

b

t

t

 (a) 2 (b) 4

 (c) 6 (d) 8

 Solution: (b)

b

t

t

 Crippling load, P
EI

L
c
=
π

2

2

 When the bond between the strips is perfect, 

P
E

L
b t

E

L
bt= = ×

π π
2

2

3
2

2

31

12
2

12
8( )

 When the bond between the strips is not perfect,

P
E

L
bt

E

L
bt

P

P
o

0

2

2

3
2

2

32
1

12 12
2 4= = × =

π π

 
,

 Hence, the correct option is (b).

 6. A rigid bar GH of length L is supported by a hinge 

and a spring of sti!ness k as shown in the figure 

below. The buckling load, P
cr
, for the bar will be 

 [2008]

P

G

K

L

H
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 (a) 0.5 KL (b) 0.8 KL

 (c) 1.0 KL (d) 1.2 KL

 Solution: (c)
P

G

K

L

H

P
cr

δ

G

K
H

P
cr

δ G

L

H
F = kδ

  Let δ be the deflection of the spring and F be the 

force in the spring.

 Taking moments about the hinge G,

P FL
cr
δ =

   P
K L

cr
=

δ

δ

  P KL
cr

 Hence, the correct option is (c).

 7. A steel column, pinned at both ends, has a buck-

ling load of 200 kN. If the column is restrained 

against lateral movement at its mid height, its 

buckling load will be [2007]

 (a) 200 kN (b) 283 kN

 (c) 400 kN (d) 800 kN 

 Solution: (d)

 Case (a) Case (b)

  Buckling load when the column ends hinged, P
E
 = 

200 kN

  For case a, when the ends of the column are hinged 

l
e
 = L

P
EI

L

EI

L
E
= ⇒ =
π π

2

2

2

2
200

  For case b, when the lateral movement at mid 

height is restrained, l
L

e
2

 P
EI

L
E
=










π 2

2

2

= 
4 2

2

π EI

L
⋅= 4 × 200 = 800 kN

 Hence, the correct option is (d).

 8. The buckling load P = P
cr
 for the column AB in the 

figure, as K
T
 approaches infinity, become α

π
2

2

EI

L
, 

where α is equal to [2006]

B

A

Flexural rigidity, El

Torsional spring of stiffness K
T

L

P

 (a) 0.25 (b) 1.00

 (c) 2.05 (d) 4.00

 Solution: (d)

B

A

Flexural rigidity, El

Torsional stiffness of spring K
T

L

P

  Both the ends behave as fixed supports because K
T
 

approaches infinity. 

P
EI

L
cr
=

4 2

2

π

 Therefore, α = 4.0

 Hence, the correct option is (d).



ONE-MARK QUESTION

 1. A thin cylindrical vessel of mean diameter D and 

of length L closed at both ends is subjected to a 

water pressure p. The value of hoop stress and lon-

gitudinal stress in the shell shall be respectively   

 [1991]

 (a) 
pD

t

pD

t2 4
,  (b) 

pD

t

pD

t4 8
,

 (c) 
pD

t

pD

t8 8
,  (d) 

pD

t

pD

t
,

2

 Solution: (a)

 D: Diameter of cylindrical vessel 

 L: Length of the cylindrical vessel

 p: Internal fluid pressure

 t: Thickness of the wall

 Hoop stress,

σ
n

pD

t
=

2

 Longitudinal stress, 

σ
l

pD

t
=

4

 Hence, the correct option is (a).

TWO-MARKS QUESTIONS

 1. A thin walled cylindrical pressure vessel having a 

radius of 0.5 m and wall thickness of 25 mm is 

subjected to an internal pressure of 700 kPa. The 

hoop stress developed is [2009]

 (a) 14 MPa (b) 1.4 MPa

 (c) 0.14 MPa (d) 0.014 MPa

 Solution: (a)

 Radius of the vessel, r = 0.5 m

 Thickness of the vessel, t = 25 mm

 Internal fluid pressure, p = 700 N/mm2

 Hoop stress 

σ
h

pr

t
= = 

0 7 500

25

.
 = 14 N/mm2 = 14 MPa

 Hence, the correct option is (a).

 2. A thin-walled long cylindrical tank of inside radius  

r is subjected simultaneously to internal gas pres-

sure p and axial compressive force F at its ends. In 

order to produce ‘pure shear’ state of stress in the 

wall of the cylinder, F should be equal to [2006]

 (a) π pr2 (b) 2π pr2

 (c) 3π pr2 (d) 4π pr2

 Solution: (c)

        

F F
p

 Hoop stress, 

σ
c

pr

t
=

 Longitudinal stress, 

σ
π

l

pr

t

F

rt
= −

2 2

  For pure shear state, σ
l
 should be compressive and 

is equal to σ
c

   σ σ
c l
= −

pr

t

pr

t

F

rt

pr

t

F

rt
F pr= − + = =

2 2

3

2 2
3 2

π π
π; ;

 Hence, the correct option is (c).

Thin Cylinders

Chapter 9



ONE-MARK QUESTIONS

 1. Consider the plane truss with load P as shown in 

the figure. Let the horizontal and vertical reactions 

at the joint B be H
B
 and V

B
, respectively and V

C
 be 

the vertical reaction at the joint C. [2016]

A

B C
D

FE

G

P

L

L

L L

L

60°

60°

60° 60°

  Which one of the following sets gives the correct 

values of VB, HB and VC? 

 (a) V
B
 = 0; H

B
 = 0; V

C
 = P 

 (b) V
B
 = P/2; H

B
 = 0; V

C
 = P/2 

 (c) V
B
 = P/2; H

B
 = P (sin 60°); V

C
 = P/2

 (d) V
B
 = P; H

B
 = P (cos 60°); V

C
 = 0

Miscellaneous Topics

 

A

B C
D

FE

G

P

L

L

L L

L

60°

60°

60° 60°

 Solution: (a)

Exp: F H

M V L V

V V P

H B

c B B

c

∑

∑

∑

= ⇒ =

= ⇒ × = ⇒ =

= ⇒ =

0 0

0 2 0 0

0

 Hence, the correct option is (a).

 2. The point within the cross sectional plane of a 

beam through which the resultant of the external 

loading on the beam has to pass through to ensure 

pure bending without twisting of the cross-section 

of the beam is called [2009]

10Chapter
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 (a) Moment centre (b) Centroid

 (c) Shear centre (d) Elastic centre

 Solution: (c)

  Shear centre is the point within the cross sectional 

plane of a beam through which the resultant of the 

external loading on the beam has to pass through 

to ensure pure bending without twisting of cross 

section of the beam.

 Hence, the correct option is (c).

 3. The square root of the ratio of moment of inertia of 

the cross section to its cross sectional area is called

 [2009]

 (a) Second moment of area

 (b) Slenderness ratio

 (c) Section modulus

 (d) Radius of gyration

 Solution: (d)

 Radius of gyration,

k
I

A

 I: Moment of Inertia of the cross section

 A: Cross-sectional area

 Hence, the correct option is (d).

 4. In section, shear centre is a point through which, 

if the resultant load passes, the section will not be 

subjected to any [1999]

 (a) Bending (b) Tension

 (c) Compression (d) Torsion

 Solution: (d)

  Shear center is a point on a line parallel to the axis 

of a beam through which any transverse force must 

be applied to avoid twisting of the section.

 Hence, the correct option is (d).

 5. The kern area (core) of a solid circular section col-

umn of diameter D is a concentric circle of diam-

eter d equal to [1992] 

 (a) 
D

8
 (b) 

D

6

 (c) 
D

4
 (d) 

D

2

 Solution: (c)

 Let D : Diametre of the solid circular section

 d : Diametre of the core

  Core or kernel of a section is the area within which 

the resultant load passes so that no part of the sec-

tion is under tension.

  For solid circular section of diameter D, the diam-

eter of the core is
D

4

D

l
D

8
lD

8

 Hence, the correct option is (c).

TWO-MARKS QUESTIONS

 1. The magnitudes of vectors P, Q, and R are 100 kN, 

250 kN and 150 kN, respectively as shown in the 

figure. [2016]

R
X

P

Q

60°

45°

90°

  The respective values of the magnitude (in kN) and 

the direction (with respect to the x-axis) of there-

sultant vector are

 (a) 290.9 and 96.0°  (b) 368.1 and 94.7° 

 (c) 330.4 and 118.9° (d) 400.1 and 113.5°

 Solution: (c)

 Resolving components w.r.t x-axis

F P R

F

x

x

∑
∑

⇒ °+ + + + +

= °+

cos cos( ) cos( )

cos cos(

60 60 45 90 45 60

100 60 250 995 100 195

159 6

60 60 45 90

) cos( )

.

sin sin( ) sin(

+

= −

= + + +

∑
∑

F

F P Q R

x

y

kN

++ +

= + +

∑

45 60

100 60 250 95 100 195

)

sin sin( ) sin( )
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=

= +

∑ 289 3

2

.F

F F F

y

x

kN

yy

y

x

F

F

2 2 2159 6 289 3 330 4

289 3

159 6
61

= − + =

= =
−

⇒ = −

( . ) ( . ) .

tan
.

.
.

kN

θ θ 11

180 61 1 118 9

°

= − = °θ wrt -axisx . .

X

Q = 250 kN

P = 100 kN

R = 150 kN

60°

45°
90°

 Hence, the correct option is (c).

 2. A box of weight 100 kN shown in the figure is to 

be lifted without swinging. If all the forces are 

coplanar, the magnitude and direction (θ) of the 

force (F) with respect to x-axis should be 

 [2014] 

100 kN

30°

45°

40 kN

90 kN

y

X

F

θ

 (a) F = 56.389 kN and θ = 28.28°

 (b) F = –56.389 kN and θ = –28.28°

 (c) F = 9.055 kN and θ = 1.1414°

 (d) F = –9.055 kN and θ = −1.1414°

 Solution: (a)

100 kN

30°

45°

40 kN

90 kN

y

F

X

θ

 For no swinging of the box,

ΣF

F

x
=

− °+ ° + =

0

90 30 40 45 0cos cos cosθ

 F cos .θ = 49 658  (1)

ΣF F
y
= ⇒ °+ °+ − =0 90 30 40 45 100 0sin sin sinθ

 F sin .θ = 26 72  (2)

 From (1) and (2), tan θ = 0.538 ⇒ θ = 28.8°

F cos 28.28° = 49.658

F 56 389. kN

 Hence, the correct option is (a).

 3. The possible location of shear centre of the chan-

nel section, shown in the figure, is [2014]

 

P Q R S

 (a) P (b) Q

 (c) R (d) S 

 Solution: (a)

P Q R S

A AF

e

W

P

V

B B

C C

D D F ′E E
shear flow

  When a force W is applied at a distance e to the left 

of the centre line of web BD, the member bends in 

a vertical plane without twisting. 

We = Fh
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  Distance of shear center from the cg of section, 

e
Fh

W

  Shear centre is the point P, where the line of action 

of force W intersects the axis of symmetry of the 

end section.

  If the oblique load is applied through the shear 

centre, the member will also be free from twisting, 

since it can resolve into W
x
 and W

y
.

 Hence, the correct option is (a).

 4. A disc of radius r has a hole of radius r/2 cut-out as 

shown. The centroid of the remaining disc (shaded 

portion) at a radial distance from the centre ‘O’ is

 [2010] 

r/2

O′

O

r

 (a) 
r

2  (b) 
r

3

 (c) 
r

6  (d) 
r

8

 Solution: (c)

r

O′

O

C

r

2

 Centroid of the shaded area,

x
A x A x

A A
=

−

−

1 1 2 2

1 2

 x : Radial distance from O

A r x

A
r r

x
r

x

r
r r

r
r

1

2

1

2

2 2

2

2
2

2
2

0

2 4 2

0
4 2

4

= =

=








 = =

=
× − ×

−

= −

π

π
π

π
π

π
π

rr

6

  Centroid of the shaded area is at a distance of
r

6
from O in radial direction.

 Hence, the correct option is (c).

 5. The maximum tensile stress at the section X-X 

shown in the figure is [2008] 

b

P

x

x

d

3

L

2

L

2

L

3

L

3

L

2

d

2

d

 (a) 
8P

bd  (b) 
6P

bd

 (c) 
4P

bd  (d) 
2P
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  At section XX, the load P is acting at an eccentric-

ity of d/4. It causes direct and bending stresses.

 Maximum tensile stress at XX,σ
max

= +
P
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Z

 Cross sectional area at XX, A b
d
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 Eccentricity, e
d

4

σ
max

= + = + =
P

bd

P
d

bd

P

bd

P

bd

P

bd

2

4

24
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 Hence, the correct option is (a).

 6. For the section shown below, second moment of 

the area about an axis d/4 distance above the bot-

tom of the area is [2006] 
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 Solution: (c)

 Using parallel axis theorem,

I I A y
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 Hence, the correct option is (c).

 7. Shear centre for an angle purlin is located at

 [1996]

X

Z
Y

 (a) X (b) Y

 (c) Z (d) None

 Solution: (a)

P

 Location of shear centre for angle section.

 Hence, the correct option is (a).
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FIVE-MARKS QUESTION

 1. The following figure shows a simply supported 

beam carrying a uniformly distributed load of 10 

kN/m. Assuming the beam to have a rectangular 

cross-section of 240 mm (b) × 400 mm (h), calcu-

late stress at infinitesimal element A, B, C and D as 

shown in the figure. [2002]
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 Stress at D:
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